International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by E. Arnold, D. M. Himmel and M. G. Rossmann

International Tables for Crystallography (2012). Vol. F, ch. 18.6, pp. 512-519   | 1 | 2 |
https://doi.org/10.1107/97809553602060000860

Chapter 18.6. CNS, a program system for structure-determination and refinement

A. T. Brunger,a* P. D. Adams,b W. L. DeLano,c P. Gros,d R. W. Grosse-Kunstleve,b J.-S. Jiang,e N. S. Pannu,f R. J. Read,g L. M. Riceh and T. Simonsoni

aHoward Hughes Medical Institute, and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, and Stanford Synchrotron Radiation Laboratory (SSRL), Stanford University, 1201 Welch Road, MSLS P210, Stanford, CA 94305, USA,bThe Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA,cGraduate Group in Biophysics, Box 0448, University of California, San Francisco, CA 94143, USA,dCrystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands,eProtein Data Bank, Biology Department, Brookhaven National Laboratory, Upton, NY 11973–5000, USA,fDepartment of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1,gDepartment of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, CIMR, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, England,hDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA, and iLaboratoire de Biologie Structurale (CNRS), IGBMC, 1 rue Laurent Fries, 67404 Illkirch (CU de Strasbourg), France
Correspondence e-mail:  brunger@stanford.edu

References

Adams, P. D., Pannu, N. S., Read, R. J. & Brünger, A. T. (1997). Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc. Natl Acad. Sci. USA, 94, 5018–5023.Google Scholar
Blow, D. M. & Crick, F. H. C. (1959). The treatment of errors in the isomorphous replacement method. Acta Cryst. 12, 794–802.Google Scholar
Blundell, T. L. & Johnson, L. N. (1976). Protein Crystallography, pp. 375–377. London: Academic Press.Google Scholar
Bricogne, G. (1984). Maximum entropy and the foundations of direct methods. Acta Cryst. A40, 410–445.Google Scholar
Brünger, A. T. (1988). Crystallographic refinement by simulated annealing: application to a 2.8 Å resolution structure of aspartate aminotransferase. J. Mol. Biol. 203, 803–816.Google Scholar
Brünger, A. T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature (London), 355, 472–475.Google Scholar
Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR System (CNS): a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921.Google Scholar
Brünger, A. T., Adams, P. D. & Rice, L. M. (1997). New applications of simulated annealing in X-ray crystallography and solution NMR. Structure, 5, 325–336. Google Scholar
Brünger, A. T., Karplus, M. & Petsko, G. A. (1989). Crystallographic refinement by simulated annealing: application to crambin. Acta Cryst. A45, 50–61.Google Scholar
Brünger, A. T., Krukowski, A. & Erickson, J. W. (1990). Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Cryst. A46, 585–593.Google Scholar
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science, 235, 458–460.Google Scholar
Burling, F. T. & Brünger, A. T. (1994). Thermal motion and conformational dis­order in protein crystal structures: comparison of multi-conformer and time-averaging models. Isr. J. Chem. 34, 165–175.Google Scholar
Burling, F. T., Weis, W. I., Flaherty, K. M. & Brünger, A. T. (1996). Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science, 271, 72–77.Google Scholar
Graham, I. S. (1995). The HTML Sourcebook. John Wiley and Sons.Google Scholar
Hendrickson, W. A. (1979). Phase information from anomalous-scattering measurements. Acta Cryst. A35, 245–247.Google Scholar
Hendrickson, W. A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 254, 51–58.Google Scholar
Hendrickson, W. A. & Lattman, E. E. (1970). Representation of phase probability distributions for simplified combination of independent phase information. Acta Cryst. B26, 136–143.Google Scholar
Jiang, J.-S. & Brünger, A. T. (1994). Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115.Google Scholar
Kleywegt, G. J. & Brünger, A. T. (1996). Checking your imagination: applications of the free R value. Structure, 4, 897–904.Google Scholar
Otwinowski, Z. (1991). In Proceedings of the CCP4 Study Weekend. Isomorphous Replacement and Anomalous Scattering, edited by W. Wolf, P. R. Evans & A. G. W. Leslie, pp. 80–86. Warrington: Daresbury Laboratory.Google Scholar
Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. (1998). Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Cryst. D54, 1285–1294.Google Scholar
Pannu, N. S. & Read, R. J. (1996). Improved structure refinement through maximum likelihood. Acta Cryst. A52, 659–668.Google Scholar
Read, R. J. (1986). Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140–149.Google Scholar
Read, R. J. (1990). Structure-factor probabilities for related structures. Acta Cryst. A46, 900–912.Google Scholar
Read, R. J. (1994). Maximum likelihood refinement of heavy atoms. Lecture notes for a workshop on isomorphous replacement methods in macromolecular crystallography. American Crystallographic Association Annual Meeting, 1994, Atlanta, GA, USA.Google Scholar
Read, R. J. (1997). Model phases: probabilities and bias. Methods Enzymol. 277, 110–128.Google Scholar
Rice, L. M. & Brünger, A. T. (1994). Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins Struct. Funct. Genet. 19, 277–290.Google Scholar
Stout, G. H. & Jensen, L. H. (1989). X-ray Structure Determination, p. 33. New York: Wiley Interscience.Google Scholar
Weis, W. I., Brünger, A. T., Skehel, J. J. & Wiley, D. C. (1990). Refinement of the influenza virus haemagglutinin by simulated annealing. J. Mol. Biol. 212, 737–761.Google Scholar