23.3.5. Phosphate and sulfate

Novel features of molecular recognition and electrostatic interactions of these two tetrahedral oxyanions have emerged from our crystallographic and functional studies of the phosphate-binding protein (PBP) and sulfate-binding protein (SBP), which serve as extremely specific initial receptors for ATP-binding cassette (ABC)-type active transport or permease in bacterial cells. The complexes of these proteins have K_d values in the low mM range. Although phosphate and sulfate are structurally similar, at physiological pH PBP and SBP exhibit no overlap in specificity (Medveczky & Rosenberg, 1971; Pardee, 1966; Jacobson & Quiocho, 1988). This stringent specificity prevents one tetrahedral oxyanion nutrient from becoming an inhibitor of transport for the other. The specificity of the PBP-dependent phosphate transport system is also shared by other phosphate transport systems in eukaryotic cells and across brush borders and into mitochondria.

As described below, discrimination between anions is based solely on the protonation state of the ligand. Sulfate, a conjugate base of a strong acid, is completely ionized at pH values above 3, whereas phosphate, a conjugate base of a weak acid, remains protonated up to pH 13.

The structure of the PBP-phosphate complex was initially determined at 1.7 Å resolution (Luecke & Quiocho, 1990). The resolution has been pushed to an ultra high resolution of 0.98 Å, the first reported for a protein with a molecular weight as high as 34 kDa with a bound ligand (Wang et al., 1997). The bound phosphate is completely desolvated and sequestered in the protein cleft between two domains. It makes 12 hydrogen bonds with the proteins (11 with donor groups and one with an acceptor group), as well as one salt link to an Arg that is in turn salt-linked to an Asp residue (Fig. 23.3.5.1). The distances of the 12 hydrogen bonds between phosphate and PBP obtained from the ultra high resolution structure range from 2.432 to 2.906 Å (Wang et al., 1997). The Asp56 carboxylate, the lone acceptor group, plays two key roles in conferring the exquisite specificity of PBP. It recognizes, by way of the hydrogen bond, a proton on the phosphate and presumably disallows, by charge repulsion, the binding of a fully ionized sulfate dianion (Luecke & Quiocho, 1990).

The SBP binding-site cleft is also tailor-made for sulfate (Pflugrath & Quiocho, 1985). In keeping with the stringent specificity of SBP for fully ionized tetrahedral oxyanions (Pardee, 1966; Jacobson & Quiocho, 1988), the bound sulfate, which is also completely dehydrated and buried, is held in place by seven hydrogen bonds made entirely with donor groups from uncharged polar residues of the protein (Fig. 23.3.5.2) (Pflugrath & Quiocho, 1985). The absence of a hydrogen-bond acceptor group accounts for the inability of SBP to bind phosphate. Interestingly, the absence of a salt link and the formation of five fewer hydrogen bonds with the bound sulfate (Fig. 23.3.5.2b) than with the bound phosphate (Fig. 23.3.5.2b) do not make the affinity of the SBP–sulfate complex any weaker than that of the PBP–phosphate complex. In fact, the sulfate binds 10–20 times more tightly to SBP (Pardee, 1966; Jacobson & Quiocho, 1988). Also, the hydration energies of both anions are likely to be similar.

The ability of PBP and SBP to differentiate each oxyanion ligand through the presence or absence of proton(s) is an extremely high level of sophistication in molecular recognition. The importance of complete hydrogen bonding in recognition of buried ligands is powerfully demonstrated in PBP and SBP. As the sulfate is fully ionized (i.e. possesses no hydrogen at physiological pH), repulsion occurs at Asp56 of PBP specifically for this dianion. On the other hand, SBP is unable to bind phosphate because it contains no hydrogen-bond acceptor in the binding site. Significantly, despite the potential for a large number of matched hydrogen-bonding pairs, a single mismatched hydrogen bond (e.g. a fully ionized sulfate providing no proton for interaction with Asp56 of PBP and no acceptor group in SBP for a phosphate proton) represents a binding energy barrier of 6–7 kcal mol$^{-1}$ (1 kcal mol$^{-1}$ = 4.184 kJ mol$^{-1}$).

Figure 23.3.4.5
The specific recognition of the messenger RNA 7-methylguanosine cap. (a) The residues contacting the m7G base in the cap-binding protein, IF-4E (Marcotrigiano et al., 1997). (b) The residues interacting with the cap in the vaccinia RNA methyltransferase VP39 (Hodel et al., 1997). Both proteins bind to the charged, methylated base by stacking aromatic amino acids on both sides of the base.