International
Tables for Crystallography Volume F Crystallography of biological macromolecules Edited by E. Arnold, D. M. Himmel and M. G. Rossmann © International Union of Crystallography 2012 |
International Tables for Crystallography (2012). Vol. F, ch. 2.1, pp. 54-55
Section 2.1.4.3.2. Scattering by a plane of atoms^{a}Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands |
A plane of atoms reflects an X-ray beam with a phase retardation of with respect to the scattering by a single atom. The difference is caused by the difference in path length from source (S) to atom (M) to detector (D) for the different atoms in the plane (Fig. 2.1.4.6). Suppose the plane is infinitely large. The shortest connection between S and D via the plane is S–M–D. The plane containing S, M and D is perpendicular to the reflecting plane, and the lines SM and MD form equal angles with the reflecting plane. Moving outwards from atom M in the reflecting plane, to P for instance, the path length S–P–D is longer. At the edge of the first Fresnel zone, the path is longer (Fig. 2.1.4.6). This edge is an ellipse with its centre at M and its major axis on the line of intersection between the plane SMD and the reflecting plane. Continuing outwards, many more elliptic Fresnel zones are formed. Clearly, the beams radiated by the many atoms in the plane interfere with each other. The situation is represented in the Argand diagram in Fig. 2.1.4.7. Successive Fresnel zones can be subdivided into an equal number of subzones. If the distribution of electrons is sufficiently homogeneous, it can be assumed that the subzones in one Fresnel zone give the same amplitude at D. Their phases are spaced at regular intervals and their vectors in the Argand diagram lie in a half circle. In the lower part of Fig. 2.1.4.7, this is illustrated for the first Fresnel zone. For the second Fresnel zone (upper part), the radius is slightly smaller, because the intensity radiated by more distant zones decreases (Kauzmann, 1957). Therefore, the sum of vectors pointing upwards is shorter than that of those pointing downwards, and the resulting scattered wave lags in phase behind the scattering by the atom at M.
References
Kauzmann, W. (1957). Quantum Chemistry. New York: Academic Press.