Tables for
Volume F
Crystallography of biological macromolecules
Edited by E. Arnold, D. M. Himmel and M. G. Rossmann

International Tables for Crystallography (2012). Vol. F, ch. 4.1, pp. 99-121   | 1 | 2 |

Chapter 4.1. General methods

C. Sauter,a B. Lorber,b A. McPhersonc and R. Giegéd*

aInstitut de Biologie Moléculaire et Cellulaire (IBMC), Centre National pour la Recherche Scientifique (CNRS), 15 rue René Descartes, Strasbourg, F-67084, France,bUPR 9002, IBMC–CNRS, 15 rue René Descartes Cedex, Strasbourg, 67084, France,cDepartment of Molecular Biology and Biochemistry, University of California, 560 Steinhaus, Irvine, CA 92697–3900, USA, and dMachineries Traductionnelles, ARN, UPR 9002, IBMC du CNRS, 15 rue René Descartes, Strasbourg, 67084, France
Correspondence e-mail:


Abe, F. & Horikoshi, K. (2001). The biotechnological potential of piezophiles. Trends Biotechnol. 19, 102–108.
Adachi, H., Takano, K., Matsumura, H., Inoue, T., Mori, Y. & Sasaki, T. (2004). Protein crystal growth with a two-liquid system and stirring solution. J. Synchrotron Rad. 11, 121–124.
Al-Haq, M. I., Lebrasseur, E., Choi, W. K., Tsuchiya, H., Torii, T., Yamazaki, H. & Shinohara, E. (2007). An apparatus for electric-field-induced protein crystallization. J. Appl. Cryst. 40, 199–201.
Anand, K., Pal, D. & Hilgenfeld, R. (2002). An overview on 2-methyl-2,4-pentanediol in crystallization and in crystals of biological macromolecules. Acta Cryst. D58, 1722–1728.
Asherie, N. (2004). Protein crystallization and phase diagrams. Methods, 34, 266–272.
Astier, J.-P. & Veesler, S. (2008). Using temperature to crystallize proteins: a mini-review. Cryst. Growth Des. 8, 4200–4207.
Astier, J.-P., Veesler, S. & Boistelle, R. (1998). Protein crystals orientation in a magnetic field. Acta Cryst. D54, 703–706.
Ataka, M., Katoh, E. & Wakayama, N. I. (1997). Magnetic orientation as a tool to study the initial stage of crystallization of lysozyme. J. Cryst. Growth, 173, 592–596.
Auerbach-Nevo, T., Zarivach, R., Peretz, M. & Yonath, A. (2005). Reproducible growth of well diffracting ribosomal crystals. Acta Cryst. D61, 713–719.
Bailey, K. (1942). The growth of large single crystals of proteins. Faraday Soc. Trans. 38, 186–192.
Bancel, P. A., Cajipe, V. B., Rodier, F. & Witz, J. (1998). Laser seeding for biomolecular crystallization. J. Cryst. Growth, 191, 537–544.
Bard, J., Ercolani, K., Svenson, K., Olland, A. & Somers, W. (2004). Automated systems for protein crystallization. Methods, 34, 329–347.
Bergfors, T. (2003). Seeds to crystals. J. Struct. Biol. 142, 66–76.
Bergfors, T. (2007). Screening and optimization methods for nonautomated crystallization laboratories. Methods Mol. Biol. 363, 131–151.
Berry, I. M., Dym, O., Esnouf, R. M., Harlos, K., Meged, R., Perrakis, A., Sussman, J. L., Walter, T. S., Wilson, J. & Messerschmidt, A. (2006). SPINE high-throughput crystallization, crystal imaging and recognition techniques: current state, performance analysis, new technologies and future aspects. Acta Cryst. D62, 1137–1149.
Biertümpfel, C., Basquin, J., Birkenbihl, R. P., Suck, D. & Sauter, C. (2005). Characterization of crystals of the Hjc resolvase from Archaeoglobus fulgidus grown in gel by counter-diffusion. Acta Cryst. F61, 684–687.
Biertümpfel, C., Basquin, J., Suck, D. & Sauter, C. (2002). Crystallization of biological macromolecules using agarose gel. Acta Cryst. D58, 1657–1659.
Bolen, D. W. (2004). Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization. Methods, 34, 312–322.
Bonneté, F., Malfois, M., Finet, S., Tardieu, A., Lafont, S. & Veesler, S. (1997). Different tools to study interaction potentials in γ-crystallin solutions: relevance to crystal growth. Acta Cryst. D53, 438–447.
Borgstahl, G. E. (2007). How to use dynamic light scattering to improve the likelihood of growing macromolecular crystals. Methods Mol. Biol. 363, 109–129.
Boulot, G., Guillon, V., Mariuzza, R. A., Poljak, R. J., Riottot, M.-M., Souchon, H., Spinelli, S. & Tello, D. (1988). Crystallization of antibody fragments and their complexes with antigen. J. Cryst. Growth, 90, 213–221.
Budayova-Spano, M., Dauvergne, F., Audiffren, M., Bactivelane, T. & Cusack, S. (2007). A methodology and an instrument for the temperature-controlled optimization of crystal growth. Acta Cryst. D63, 339–347.
Caffrey, M. & Cherezov, V. (2009). Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731.
Carson, M., Johnson, D. H., McDonald, H., Brouillette, C. & DeLucas, L. J. (2007). His-tag impact on structure. Acta Cryst. D63, 295–301.
Carter, C. W. Jr (1997). Response surface methods for optimizing and improving reproducibility of crystal growth. Methods Enzymol. 276, 74–99.
Carter, C. W. & Carter, C. W. Jr (1979). Protein crystallization using incomplete factorial experiments. J. Biol. Chem. 254, 12219–12223.
Carter, D. C., Lim, K., Ho, J. X., Wright, B. S., Twigg, P. D., Miller, T. Y., Chapman, J., Keeling, K., Ruble, J., Vekilov, P. G., Thomas, B. R., Rosenberger, F. & Chernov, A. A. (1999). Lower dimer impurity incorporation may result in higher perfection of HEWL crystal grown in µg – a case study. J. Cryst. Growth, 196, 623–637.
Chang, V. E., Crispin, M., Aricescu, A. R., Harvey, D. J., Nettleship, J. E., Fennelly, J. A., Yu, C., Boles, K. S., Evans, E. J., Stuart, D. I., Dwek, R. A., Jones, E. Y., Owens, R. J. & Davis, S. J. (2007). Glycoprotein structural genomics: solving the glycosylation problem. Structure, 15, 267–273.
Charron, C., Didierjean, C., Mangeot, J.-P. & Aubry, A. (2003). The `Octopus' plate for protein crystallization under an electric field. J. Appl. Cryst. 36, 1482–1483.
Charron, C., Robert, M.-C., Capelle, B., Kadri, A., Jenner, G., Giegé, R. & Lorber, B. (2002). X-ray diffraction properties of protein crystals prepared in agarose gel under hydrostatic pressure. J. Cryst. Growth, 245, 321–333.
Chayen, N. E. (1996). A novel technique for containerless protein crystallization. Protein Eng. 9, 927–929.
Chayen, N. E. (1997). A novel technique to control the rate of vapor diffusion, giving larger protein crystals. J. Appl. Cryst. 30, 198–202.
Chayen, N. E. (2005). Methods for separating nucleation and growth in protein crystallisation. Prog. Biophys. Mol. Biol. 88, 329–337.
Chayen, N. E. (2009). Rigorous filtration for protein crystallization. J. Appl. Cryst. 42, 743–744.
Chayen, N. E., Lloyd, L. F., Collyer, C. A. & Blow, D. M. (1989). Trigonal crystals of glucose isomerase require thymol for their growth and stability. J. Cryst. Growth, 97, 367–374.
Chayen, N. E. & Saridakis, E. (2008). Protein crystallization: from purified protein to diffraction-quality crystal. Nat. Methods, 5, 147–153.
Chayen, N. E., Saridakis, E. & Sear, R. P. (2006). Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl Acad. Sci. USA, 103, 597–601.
Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L. & Blow, D. M. (1990). An automated system for microbatch protein crystallization and screening. J. Appl. Cryst. 23, 297–302.
Chen, X. W., Ji, Y. P. & Wang, J. H. (2010). Improvement on the crystallization of lysozyme in the presence of hydrophilic ionic liquid. Analyst, 135, 2241–2248.
Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K. & Stevens, R. C. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318, 1258–1265.
Chernov, A. A. (2003). Protein crystals and their growth. J. Struct. Biol. 142, 3–21.
Christopher, G. K., Phipps, A. G. & Gray, R. J. (1998). Temperature-dependent solubility of selected proteins. J. Cryst. Growth, 191, 820–826.
Collins, K. D. (2004). Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods, 34, 300–311.
Crosio, M.-P. & Jullien, M. (1992). Fluorescence study of precrystallization of ribonuclease A: effects of salts. J. Cryst. Growth, 122, 66–70.
Cudney, B., Patel, S. & McPherson, A. (1994). Crystallization of macromolecules in silica gels. Acta Cryst. D50, 479–483.
Dale, G. E., Oefner, C. & D'Arcy, A. (2003). The protein as a variable in protein crystallization. J. Struct. Biol. 142, 88–97.
D'Arcy, A. (1994). Crystallizing proteins – a rational approach? Acta Cryst. D50, 469–471.
D'Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). A novel approach to crystallizing proteins under oil. J. Cryst. Growth, 168, 175–180.
D'Arcy, A., MacSweeney, A. & Haber, A. (2003). Using natural seeding material to generate nucleation in protein crystallization experiments. Acta Cryst. D59, 1343–1346.
D'Arcy, A., MacSweeney, A., Stihle, M. & Haber, A. (2003). The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions. Acta Cryst. D59, 396–399.
D'Arcy, A., Sweeney, A. M. & Haber, A. (2004). Practical aspects of using the microbatch method in screening conditions for protein crystallization. Methods, 34, 323–328.
D'Arcy, A., Villard, F. & Marsh, M. (2007). An automated microseed matrix-screening method for protein crystallization. Acta Cryst. D63, 550–554.
Declercq, J.-P., Evrard, C., Carter, D. C., Wright, B. S., Etienne, G. & Parello, J. (1999). A crystal of a typical EF-hand protein grown under microgravity diffracts X-rays beyond 0.9 Å resolution. J. Cryst. Growth, 196, 595–601.
DeLucas, L. J., Bray, T. L., Nagy, L., McCombs, D., Chernov, N., Hamrick, D., Cosenza, L., Belgovskiy, A., Stoops, B. & Chait, A. (2003). Efficient protein crystallization. J. Struct. Biol. 142, 188–206.
DeLucas, L. J., Hamrick, D., Cosenza, L., Nagy, L., McCombs, D., Bray, T., Chait, A., Stoops, B., Belgovskiy, A., Wilson, W. W., Parham, M. & Chernov, N. (2005). Protein crystallization: virtual screening and optimization. Prog. Biophys. Mol. Biol. 88, 285–309.
DeLucas, L. J., Long, M. M., Moore, K. M., Rosenblum, W. M., Bray, T. L., Smith, C., Carson, M., Narayana, S. V. L., Harrington, M. D., Carter, D., Clark, A. D., Nanni, R. G., Ding, J., Jacobomolina, A., Kamer, G., Hughes, S. H., Arnold, E., Einspahr, H. M., Clancy, L. L., Rao, G. S. J., Cook, P. F., Harris, B. G., Munson, S. H., Finzel, B. C., McPherson, A., Weber, P. C., Lewandowski, F. A., Nagabhushan, T. L., Trotta, P. P., Reichert, P., Navia, M. A., Wilson, K. P., Thomson, J. A., Richards, R. N., Bowersox, K. D., Meade, C. J., Baker, E. S., Bishop, S. P., Dunbar, B. J., Trinh, E., Prahl, J., Sacco, A. & Bugg, C. E. (1994). Recent results and new hardware developments for protein crystal growth in microgravity. J. Cryst. Growth, 135, 183–195.
DeMattei, R. C. & Feigelson, R. S. (1993). Thermal methods for crystallizing biological macromolecules. J. Cryst. Growth, 128, 1225–1231.
Derewenda, Z. S. (2004). The use of recombinant methods and molecular engineering in protein crystallization. Methods, 34, 354–363.
Dhouib, K., Khan Malek, C., Pfleging, W., Gauthier-Manuel, B., Duffait, R., Thuillier, G., Ferrigno, R., Jacquamet, L., Ohana, J., Ferrer, J.-L., Théobald-Dietrich, A., Giegé, R., Lorber, B. & Sauter, C. (2009). Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip, 9, 1412–1421.
Dierks, K., Meyer, A., Einspahr, H. & Betzel, C. (2008). Dynamic light scattering in protein crystallization droplets: adaptations for analysis and optimization of crystallization processes. Cryst. Growth Des. 8, 1628–1634.
Dobrianov, I., Finkelstein, K. D., Lemay, S. G. & Thorne, R. E. (1998). X-ray topographic studies of protein crystal perfection and growth. Acta Cryst. D54, 922–937.
Dock, A.-C., Lorber, B., Moras, D., Pixa, G., Thierry, J.-C. & Giegé, R. (1984). Crystallization of transfer ribonucleic acids. Biochimie, 66, 179–201.
Dock-Bregeon, A.-C., Chevrier, B., Podjarny, A., Moras, D., deBear, J. S., Gough, G. R., Gilham, P. T. & Johnson, J. E. (1988). High resolution structure of the RNA duplex [U(U-A)6A]2. Nature (London), 335, 375–378.
Ducruix, A. & Giegé, R. (1999). Editors. Crystallization of Nucleic Acids and Proteins: a Practical Approach, 2nd ed. Oxford: IRL Press.
Durbin, S. D. & Feher, G. (1990). Studies of crystal growth mechanisms by electron microscopy. J. Mol. Biol. 212, 763–774.
Durbin, S. D. & Feher, G. (1996). Protein crystallization. Annu. Rev. Phys. Chem. 47, 171–204.
Ebel, C., Faou, P. & Zaccaï, G. (1999). Protein–solvent and weak protein–protein interactions in halophilic malate dehydrogenase. J. Cryst. Growth, 196, 395–402.
Ferré-D'Amaré, A. R. (2010). Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods, 52, 159–167.
Ferré-D'Amaré, A. R. & Burley, S. (1997). Dynamic light scattering in evaluating crystallizability of macromolecules. Methods Enzymol. 274, 157–166.
Finet, S., Bonneté, F., Frouin, J., Provost, K. & Tardieu, A. (1998). Lysozyme crystal growth, as observed by small angle X-ray scattering, proceeds without crystallization intermediates. Eur. J. Biophys. 27, 263–271.
Forsythe, E., Achari, A. & Pusey, M. L. (2006). Trace fluorescent labeling for high-throughput crystallography. Acta Cryst. D62, 339–346.
Fourme, R., Ducruix, A., Riès-Kautt, M. & Capelle, B. (1995). The perfection of protein crystals probed by direct recording of Bragg reflection profiles with a quasi-planar X-ray wave. J. Synchrotron Rad. 2, 136–142.
Frontana-Uribe, B. A. & Moreno, A. (2008). On electrochemically assisted protein crystallization and related methods. Cryst. Growth Des. 8, 4194–4199.
Garcia-Ruiz, J. M. (2003). Counterdiffusion methods for macromolecular crystallization. Methods Enzymol. 368, 130–154.
Garcia-Ruiz, J. M. & Moreno, A. (1994). Investigations on protein crystal growth by the gel acupuncture method. Acta Cryst. D50, 484–490.
Garcia-Ruiz, J. M., Moreno, A., Otalora, F., Rondon, D., Viedma, C. & Zauscher, F. (1998). Teaching protein crystallization by the gel acupuncture method. J. Chem. Educ. 75, 442–446.
Garcia-Ruiz, J. M., Novella, M. L. & Otalora, F. (1999). Supersaturation patterns in counter-diffusion crystallization methods followed by Mach–Zehnder interferometry. J. Cryst. Growth, 196, 703–710.
Gavira, J. A. & Garcia-Ruiz, J. M. (2002). Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals. Acta Cryst. D58, 1653–1656.
Gavira, J. A., Toh, D., Lopez-Jaramillo, J., Garcia-Ruiz, J. M. & Ng, J. D. (2002). Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. Acta Cryst. D58, 1147–1154.
Georgalis, Y., Zouni, A., Eberstein, W. & Saenger, W. (1993). Formation dynamics of protein precrystallization fractal clusters. J. Cryst. Growth, 126, 245–260.
George, A., Chiang, Y., Guo, B., Abrabshari, A., Cai, Z. & Wilson, W. W. (1997). Second virial coefficient as predictor in protein crystal growth. Methods Enzymol. 276, 100–110.
Giegé, R., Dock, A.-C., Kern, D., Lorber, B., Thierry, J.-C. & Moras, D. (1986). The role of purification in the crystallization of proteins and nucleic acids. J. Cryst. Growth, 76, 554–561.
Giegé, R., Drenth, J., Ducruix, A., McPherson, A. & Saenger, W. (1995). Crystallogenesis of biological macromolecules. Biological, microgravity, and other physico-chemical aspects. Prog. Cryst. Growth Charact. 30, 237–281.
Giegé, R., Moras, D. & Thierry, J.-C. (1977). Yeast transfer RNAAsp: a new high resolution X-ray diffracting crystal form of a transfer RNA. J. Mol. Biol. 115, 91–96.
Giegé, R., Touzé, E., Lorber, B., Théobald-Dietrich, A. & Sauter, C. (2008). Crystallogenesis trends of free and liganded aminoacyl-tRNA synthetases. Cryst. Growth Des. 8, 4297–4306.
Girard, E., Kahn, R., Mezouar, M., Dhaussy, A. C., Lin, T., Johnson, J. E. & Fourme, R. (2005). The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa. Biophys. J. 88, 3562–3571.
Goldberg, M. E., Expert-Bezancon, N., Vuillard, L. & Rabilloud, T. (1996). Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation. Fold Des. 1, 21–27.
Golden, B. L. & Kundrot, C. E. (2003). RNA crystallization. J. Struct. Biol. 142, 98–107.
Gonzalez-Ramirez, L. A., Caballero, A. G. & Garcia-Ruiz, J. M. (2008). Investigation of the compatibility of gels with precipitating agents and detergents in protein crystallization experiments. Cryst. Growth Des. 8, 4291–4296.
Gonzalez-Ramirez, L. A., Carrera, J., Gavira, J. A., Melero-Garcia, E. & Garcia-Ruiz, J. M. (2008). Granada Crystallization Facility-2: a versatile platform for crystallization in space. Cryst. Growth Des. 8, 4324–4329.
Gosavi, R. A., Bhamidi, V., Varanasio, S. & Schall, C. A. (2009). Beneficial effect of solubility enhancers on protein crystal nucleation and growth. Langmuir, 25, 4579–4587.
Green, A. A. & Hughes, W. L. (1955). Protein fractionation on the basis of the solubility in aqueous solutions of salts and organic solvents. Methods Enzymol. 1, 67–90.
Gripon, C., Legrand, L., Rosenman, I., Vidal, O., Robert, M.-C. & Boué, F. (1997). Lysozyme–lysozyme interactions in under- and super-saturated solutions: a simple relation between the second virial coefficients in H2O and D2O. J. Cryst. Growth, 178, 575–584.
Guo, M., Shapiro, R., Schimmel, P. & Yang, X.-L. (2010). Introduction of a leucine half-zipper engenders multiple high-quality crystals of a recalcitrant tRNA synthetase. Acta Cryst. D66, 243–250.
Haas, C. & Drenth, J. (1999). Understanding protein crystallization on the basis of the phase diagram. J. Cryst. Growth, 196, 388–394.
Hammadi, Z., Astier, J. P., Morin, R. & Veesler, S. (2009). Spatial and temporal control of nucleation by localized DC electric field. Cryst. Growth Des. 9, 3346–3347.
Hampel, M., Labananskas, P. G., Conners, L., Kirkegard, U. L., Raj­Bhandary, U. L., Sigler, P. B. & Bock, R. M. (1968). Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNAs. Science, 162, 1384–1386.
Hansen, C. L., Classen, S., Berger, J. M. & Quake, S. R. (2006). A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J. Am. Chem. Soc. 128, 3142–3143.
Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. (2002). A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA, 99, 16531–16536.
Hansen, C. L., Sommer, M. O. & Quake, S. R. (2004). Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl Acad. Sci. USA, 101, 14431–14436.
Harlos, K. (1992). Micro-bridges for sitting-drop crystallizations. J. Appl. Cryst. 25, 536–538.
Helliwell, J. R. & Chayen, N. E. (2007). Crystallography: a down-to-Earth approach. Nature (London), 448, 658–659.
Henisch, H. K. (1988). Crystals in Gels and Liesegang Rings. Cambridge, MA: Cambridge University Press.
Hirschler, J., Charon, M.-H. & Fontecilla-Camps, J. C. (1995). The effects of filtration on protein nucleation in different growth media. Protein Sci. 4, 2573–2577.
Holbrook, S. R., Holbrook, E. L. & Walukiewicz, H. E. (2001). Crystallization of RNA. CMLS Cell. Mol. Life Sci. 58, 234–243.
Hosfield, D., Palan, J., Hilgers, M., Scheibe, D., McRee, D. E. & Stevens, R. C. (2003). A fully integrated protein crystallization platform for small-molecule drug discovery. J. Struct. Biol. 142, 207–217.
Howard, E. I., Fernandez, J. M. & Garcia-Ruiz, J. M. (2009). On the mixing of protein crystallization cocktails. Cryst. Growth Des. 9, 2707–2712.
Hu, Z. W., Thomas, B. R. & Chernov, A. A. (2001). Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection. Acta Cryst. D57, 840–846.
Hughes, R. C. & Ng, J. D. (2007). Can small laboratories do structural genomics? Cryst. Growth Des. 7, 2226–2238.
Iimura, Y., Yoshizaki, I., Yoda, S. & Komatsu, H. (2005). Development of an embedding method for analyzing the impurity distribution in protein crystals. Cryst. Growth Des. 5, 295–300.
Izumi, K., Sawamura, S. & Ataka, M. (1996). X-ray topography of lysozyme crystals. J. Cryst. Growth, 168, 106–111.
Jakoby, W. B. (1971). Crystallization as a purification technique. Methods Enzymol. 22, 248–252.
Jancarik, J. & Kim, S.-H. (1991). Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411.
Jeruzalmi, D. & Steitz, T. A. (1997). Use of organic cosmotropic solutes to crystallize flexible proteins: application to T7 RNA polymerase and its complex with the inhibitor T7 lysozyme. J. Mol. Biol. 274, 748–756.
Judge, R. A., Forsythe, E. L. & Pusey, M. L. (1998). The effect of protein impurities on lysozyme crystal growth. Biotechnol. Bioeng. 59, 777–785.
Judge, R. A., Jacobs, R. S., Frazier, T., Snell, E. H. & Pusey, M. L. (1999). The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals. Biophys. J. 77, 1585–1593.
Judge, R. A., Takahashi, S., Longenecker, K. L., Fry, E. H., Abad-Zapatero, C. & Chiu, M. L. (2009). The effect of ionic liquids on protein crystallization and X-ray diffraction studies. Cryst. Growth Des. 9, 3463–3469.
Jurnak, F. (1986). Effect of chemical impurities in polyethylene glycol on macromolecular crystallization. J. Cryst. Growth, 76, 577–582.
Kadri, A., Jenner, G., Damak, M., Lorber, B. & Giegé, R. (2003). Crystallogenesis studies of proteins in agarose gel – combined effect of high hydrostatic pressure and pH. J. Cryst. Growth, 257, 390–402.
Kakinouchi, K., Adachi, H., Matsumura, H., Inoue, T., Murakami, S., Mori, Y., Koga, Y., Takano, K. & Kanaya, S. (2006). Effect of ultrasonic irradiation on protein crystallization. J. Cryst. Growth, 292, 437–440.
Kam, Z., Shore, H. B. & Feher, G. (1978). On the crystallization of proteins. J. Mol. Biol. 123, 539–555.
Karpukhina, S. Y., Barynin, V. V. & Lobanova, G. M. (1975). Crystallization of catalase in the ultracentrifuge. Sov. Phys. Crystallogr. 20, 417–418.
Khurshid, S., Haire, L. F. & Chayen, N. E. (2010). Automated seeding for the optimization of crystal quality. J. Appl. Cryst. 43, 752–756.
Kim, Y., Quartey, P., Li, H., Volkart, L., Hatzos, C., Chang, C., Nocek, B., Cuff, M., Osipiuk, J., Tan, K., Fan, Y., Bigelow, L., Maltseva, N., Wu, R., Borovilos, M., Duggan, E., Zhou, M., Binkowski, T. A., Zhang, R. G. & Joachimiak, A. (2008). Large-scale evaluation of protein reductive methylation for improving protein crystallization. Nat. Methods, 5, 853–854.
Kimber, M. S., Vallee, F., Houston, S., Necakov, A., Skarina, T., Evdokimova, E., Beasley, S., Christendat, D., Savchenko, A., Arrowsmith, C. H., Vedada, M., Gerstein, M. & Edwards, A. M. (2003). Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins, 51, 562–568.
Kimble, W. L., Paxton, T. E., Rousseau, R. W. & Sambanis, A. (1998). The effect of mineral substrates on the crystallization of lysozyme. J. Cryst. Growth, 187, 268–276.
Koide, S. (2009). Engineering of recombinant crystallization chaperones. Curr. Opin. Struct. Biol. 19, 449–457.
Komatsu, H., Miyashita, S. & Suzuki, Y. (1993). Interferometric observation of the interfacial concentration gradient layers around a lysozyme crystal. Jpn. J. Appl. Phys. 32, L1855–L1857.
Konnert, J. H., D'Antonio, P. & Ward, K. B. (1994). Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Cryst. D50, 603–613.
Koszelak, S. & McPherson, A. (1988). Time lapse microphotography of protein crystal growth using a color VCR. J. Cryst. Growth, 90, 340–343.
Koszelak, S., Martin, D., Ng, J. & McPherson, A. (1991). Protein crystal growth rates determined by time-lapse microphotography. J. Cryst. Growth, 110, 177–181.
Kundrot, C. E. (2004). Which strategy for a protein crystallization project? CMLS Cell. Mol. Life Sci. 61, 525–536.
Kundrot, C. E., Judge, R. A., Pusey, M. L. & Snell, E. H. (2001). Microgravity and macromolecular crystallography. Cryst. Growth Des. 1, 87–99.
Kurihara, K., Miyashita, S., Sazaki, G., Nakada, T., Suzuki, Y. & Komatsu, H. (1996). Interferometric study on the crystal growth of tetragonal lysozyme crystals. J. Cryst. Growth, 166, 904–906.
Kutá Smatanová, I., Gavira, J. A., Rezacova, P., Vacha, F. & Garcia-Ruiz, J. M. (2006). New techniques for membrane protein crystallization tested on photosystem II core complex of Pisum sativum. Photosynth. Res. 90, 255–259.
Kuznetsov, Y. G., Day, J., Newman, R. & McPherson, A. (2000). Chimeric human-simian anti-CD4 antibodies form crystalline high symmetry particles. J. Struct. Biol. 131, 108–115.
Kuznetsov, Y. G., Malkin, A. J., Greenwood, A. & McPherson, A. (1995). Interferometric studies of growth kinetics and surface morphology in macromolecular crystal growth: canavalin, thaumatin, and turnip yellow mosaic virus. J. Struct. Biol. 114, 184–196.
Kuznetsov, Y. G., Malkin, A. J. & McPherson, A. (2001). The influence of precipitant concentration on macromolecular crystal growth mechanisms. J. Cryst. Growth, 232, 114–118.
Lange, C., Patil, G. & Rudolph, R. (2005). Ionic liquids as refolding additives: N′-alkyl and N′-(omega-hydroxyalkyl) N-methylimidazolium chlorides. Protein Sci. 14, 2693–2701.
Larson, S. B., Day, J. S., Cudney, R. & McPherson, A. (2007). A novel strategy for the crystallization of proteins: X-ray diffraction validation. Acta Cryst. D63, 310–318.
Larson, S. B., Day, J. S., Nguyen, C., Cudney, R. & McPherson, A. (2008). Progress in the development of an alternative approach to macromolecular crystallization. Cryst. Growth Des. 8, 3038–3052.
Lee, I. S., Evans, J. M. B., Erdemir, D., Lee, A. Y., Garetz, B. A. & Myerson, A. S. (2008). Nonphotochemical laser induced nucleation of hen egg white lysozyme crystals. Cryst. Growth Des. 8, 4255–4261.
Lee, S. S. J. & Cudney, R. (2004). A modified microdialysis button for use in protein crystallization. J. Appl. Cryst. 37, 504–505.
Lenhoff, A. M., Pjura, P. E., Dilmore, J. G. & Godlewski, T. S. Jr (1997). Ultracentrifugal crystallization of proteins: transport-kinetic modelling and experimental behavior of catalase. J. Cryst. Growth, 180, 113–126.
Li, C. M., Kirkwood, K. L. & Brayer, G. D. (2007). The biological crystallization resource: facilitating knowledge-based protein crystallizations. Cryst. Growth Des. 7, 2147–2152.
Lin, T., Schildkamp, W., Brister, K., Doerschuk, P. C., Somayazulu, M., Mao, H. K. & Johnson, J. E. (2005). The mechanism of high-pressure-induced ordering in a macromolecular crystal. Acta Cryst. D61, 737–743.
Lin, Y. B., Zhu, D. W., Wang, T., Song, J., Zou, Y. S., Zhang, Y. L. & Lin, S. X. (2008). An extensive study of protein phase diagram modification: increasing macromolecular crystallizability by temperature screening. Cryst. Growth Des. 8, 4277–4283.
Listwan, P., Terwilliger, T. C. & Waldo, G. S. (2009). Automated, high-throughput platform for protein solubility screening using a split-GFP system. J. Struct. Funct. Genom. 10, 47–55.
Lorber, B. (2008). Virus and protein crystallization under hypergravity. Cryst. Growth Des. 8, 2964–2969.
Lorber, B. & Giegé, R. (1992). A versatile reactor for temperature controlled crystallization of biological macromolecules. J. Cryst. Growth, 122, 168–175.
Lorber, B. & Giegé, R. (1996). Containerless protein crystal­lization in floating drops: application to crystal growth monitoring under reduced nucleation conditions. J. Cryst. Growth, 168, 204–215.
Lorber, B., Jenner, G. & Giegé, R. (1996). Effect of high hydrostatic pressure on the nucleation and growth of protein crystals. J. Cryst. Growth, 158, 103–117.
Lorber, B., Ng, J. D., Lautenschlager, P. & Giegé, R. (2000). Growth kinetics and motion of thaumatin crystals during USML-2 and LMS microgravity missions and comparison with earth controls. J. Cryst. Growth, 208, 665–677.
Lorber, B., Sauter, C., Ng, J. D., Zhu, D.-W., Giegé, R., Vidal, O., Robert, M.-C. & Capelle, B. (1999). Characterization of protein and virus crystals by quasi-planar wave X-ray topography: a comparison between crystals grown in solution and in agarose gel. J. Cryst. Growth, 204, 357–368.
Lorber, B., Sauter, C., Robert, M.-C., Capelle, B. & Giegé, R. (1999). Crystallization within agarose gel in microgravity improves the quality of thaumatin crystals. Acta Cryst. D55, 1491–1494.
Lorber, B., Sauter, C., Théobald-Dietrich, A., Moreno, A., Schellenberger, P., Robert, M.-C., Capelle, B., Sanglier, S., Potier, N. & Giegé, R. (2009). Crystal growth of proteins, nucleic acids, and viruses in gels. Prog. Biophys. Mol. Biol. 101, 13–25.
Lorber, B. & Witz, J. (2008). An investigation of the crystallogenesis of an icosahedral RNA plant virus with solubility phase diagrams. Cryst. Growth Des. 8, 1522–1529.
Lübbert, D., Meents, A. & Weckert, E. (2004). Accurate rocking-curve measurements on protein crystals grown in a homogeneous magnetic field of 2.4 T. Acta Cryst. D60, 987–998.
Luft, J. & Cody, V. (1989). A simple capillary vapor diffusion apparatus for surveying macromolecular crystallization conditions. J. Appl. Cryst. 22, 396.
Luft, J. & De Titta, G. T. (1992). HANGMAN: a macromolecular hanging-drop vapor-diffusion technique. J. Appl. Cryst. 25, 324–325.
Luft, J. R., Albright, D. T., Baird, J. K. & DeTitta, G. T. (1996). The rate of water equilibration in vapor-diffusion crystallization. Dependence on the distance from the droplet to the reservoir. Acta Cryst. D52, 1098–1106.
Luft, J. R., Collins, R. J., Fehrman, N. A., Lauricella, A. M., Veatch, C. K. & DeTitta, G. T. (2003). A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170–179.
Luft, J. R., Rak, D. M. & DeTitta, G. T. (1999a). Microbatch macro­molecular crystallization in micropipettes. J. Cryst. Growth, 196, 450–455.
Luft, J. R., Rak, D. M. & DeTitta, G. T. (1999b). Microbatch macromolecular crystallization on a thermal gradient. J. Cryst. Growth, 196, 447–449.
Maclean, D. S., Qian, Q. & Middaugh, C. R. (2002). Stabilization of proteins by low molecular weight multi-ions. J. Pharm. Sci. 91, 2220–2229.
McPherson, A. (1976). Crystallization of proteins from polyethylene glycol. J. Biol. Chem. 251, 6300–6303.
McPherson, A. (1982). The Preparation and Analysis of Protein Crystals. New York: Wiley.
McPherson, A. (1990). Current approaches to macromolecular crystallization. Eur. J. Biochem. 189, 1–23.
McPherson, A. (1991). A brief history of protein crystal growth. J. Cryst. Growth, 110, 1–10.
McPherson, A. (1996). Macromolecular crystal growth in microgravity. Crystallogr. Rev. 6, 157–305.
McPherson, A. (1999). Crystallization of Biological Macromolecules. Cold Spring Harbor and New York: Cold Spring Harbor Laboratory Press.
McPherson, A. (2001). A comparison of salts for the crystallization of macromolecules. Protein Sci. 10, 418–422.
McPherson, A. (2004). Introduction to protein crystallization. Methods, 34, 254–265.
McPherson, A. & Cudney, B. (2006). Searching for silver bullets: an alternative strategy for crystallizing macromolecules. J. Struct. Biol. 156, 387–406.
McPherson, A. & Giegé, R. (2007). Crystallogenesis research for biology in the last two decades as seen from the international conferences on the crystallization of biological macromolecules. Cryst. Growth Des. 7, 2126–2133.
McPherson, A., Kuznetsov, Y. G., Malkin, A. J. & Plomp, M. (2004). Macromolecular crystal growth investigations using atomic force microscopy. J. Synchrotron Rad. 11, 21–23.
McPherson, A., Malkin, A. J. & Kuznetsov, Y. G. (1995). The science of macromolecular crystallization. Structure, 3, 759–768.
McPherson, A., Malkin, A. J., Kuznetsov, Y. G. & Koszelak, S. (1996). Incorporation of impurities into macromolecular crystals. J. Cryst. Growth, 168, 74–92.
McPherson, A. & Shlichta, P. (1988a). Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science, 239, 385–387.
McPherson, A. & Shlichta, P. (1988b). The use of heterogeneous and epitaxial nucleants to promote the growth of protein crystals. J. Cryst. Growth, 90, 47–50.
Malkin, A. J., Kuznetsov, Y. G., Land, T. A., DeYoreo, J. J. & McPherson, A. (1995). Mechanisms of growth for protein and virus crystals. Nat. Struct. Biol. 2, 956–959.
Malkin, A. J., Kuznetsov, Y. G. & McPherson, A. (1996). Defect structure of macromolecular crystals. J. Struct. Biol. 117, 124–137.
Malkin, A. J. & McPherson, A. (1994). Light-scattering investigations of nucleation processes and kinetics of crystallization in macromolecular systems. Acta Cryst. D50, 385–395.
Martins, P., Pëssoa, J., Sarkany, Z., Rocha, F. & Damas, A. (2008). Rationalizing protein crystallization screenings through water equilibration theory and protein solubility data. Cryst. Growth Des. 8, 4233–4243.
Martins, P. M., Rocha, F. & Damas, A. M. (2008). Understanding water equilibration fundamentals as a step for rational protein crystallization. PLoS One, 3, e1998.
Mikol, V., Hirsch, E. & Giegé, R. (1990). Diagnostic of precipitant for biomacromolecule crystallization by quasi-elastic light-scattering. J. Mol. Biol. 213, 187–195.
Mikol, V., Rodeau, J.-L. & Giegé, R. (1989). Changes of pH during biomacromolecule crystallization by vapor diffusion using ammonium sulfate as the precipitant. J. Appl. Cryst. 22, 155–161.
Mikol, V., Rodeau, J.-L. & Giegé, R. (1990). Experimental determination of water equilibration rates in the hanging drop method of protein crystallization. Anal. Biochem. 186, 332–339.
Minezaki, Y., Niimura, N., Ataka, M. & Katsura, T. (1996). Small angle neutron scattering from lysozyme solutions in unsaturated and supersaturated states (SANS from lysozyme solutions). Biophys. Chem. 58, 355–363.
Mirzabekov, A. D., Rhodes, D., Finch, J. T., Klug, A. & Clark, B. F. (1972). Crystallization of tRNAs as cetyltrimethylammonium salts. Nat. New Biol. 237, 27–28.
Mizianty, M. J. & Kurgan, L. (2009). Meta prediction of protein crystallization propensity. Biochem. Biophys. Res. Commun. 390, 10–15.
Moreno, A., Saridakis, E. & Chayen, N. E. (2002). Combination of oils and gels for enhancing the growth of protein crystals. J. Appl. Cryst. 35, 140–142.
Moreno, A. & Sazaki, G. (2004). The use of a new ad hoc growth cell with parallel electrodes for the nucleation control of lysozyme. J. Cryst. Growth, 264, 438–444.
Moreno, A., Théobald-Dietrich, A., Lorber, B., Sauter, C. & Giegé, R. (2005). Effects of macromolecular impurities and of crystallization method on the quality of eubacterial aspartyl-tRNA synthetase crystals. Acta Cryst. D61, 789–792.
Moreno, A., Yokaichiya, F., Dimasi, E. & Stojanoff, V. (2009). Growth and characterization of high-quality protein crystals for X-ray crystallography. Ann. N. Y. Acad. Sci. 1161, 429–436.
Nakada, T., Sazaki, G., Miyashita, S., Durbin, S. D. & Komatsu, H. (1999). Direct AFM observations of impurity effects on a lysozyme crystal. J. Cryst. Growth, 196, 503–510.
Nanev, C. N. & Penkova, A. (2001). Nucleation of lysozyme crystals under external electric and ultrasonic fields. J. Cryst. Growth, 232, 285–293.
Neal, B. L., Asthagiri, D., Velev, O. D., Lenhoff, A. M. & Kaler, E. W. (1999). Why is the osmotic second virial coefficient related to protein crystallization? J. Cryst. Growth, 196, 377–387.
Neugebauer, J. M. (1990). Detergents: an overview. Methods Enzymol. 182, 239–253.
Newman, J. (2004). Novel buffer systems for macromolecular crystallization. Acta Cryst. D60, 610–612.
Newman, J. (2005). Expanding screening space through the use of alternative reservoirs in vapor-diffusion experiments. Acta Cryst. D61, 490–493.
Newman, J., Pham, T. M. & Peat, T. S. (2008). Phoenito experiments: combining the strengths of commercial crystallization automation. Acta Cryst. F64, 991–996.
Newman, J., Xu, J. & Willis, M. C. (2007). Initial evaluations of the reproducibility of vapor-diffusion crystallization. Acta Cryst. D63, 826–832.
Ng, J., Lorber, B., Witz, J., Théobald-Dietrich, A., Kern, D. & Giegé, R. (1996). The crystallization of macromolecules from precipitates: evidence for Ostwald ripening. J. Cryst. Growth, 168, 50–62.
Ng, J. D., Clark, P. J., Stevens, R. C. & Kuhn, P. (2008). In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels. Acta Cryst. D64, 189–197.
Ng, J. D., Gavira, J. A. & Garcia-Ruiz, J. M. (2003). Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J. Struct. Biol. 142, 218–231.
Ng, J. D., Kuznetsov, Y. G., Malkin, A. J., Keith, G., Giegé, R. & McPherson, A. (1997). Visualization of RNA crystal growth by atomic force microscopy. Nucleic Acids Res. 25, 2582–2588.
Ng, J. D., Lorber, B., Giegé, R., Koszelak, S., Day, J., Greenwood, A. & McPherson, A. (1997). Comparative analysis of thaumatin crystals grown on earth and in microgravity. Acta Cryst. D53, 724–733.
Ng, J. D., Sauter, C., Lorber, B., Kirkland, N., Arnez, J. & Giegé, R. (2002). Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: space-grown crystals are more useful for structural determination. Acta Cryst. D58, 645–652.
Niesen, F. H., Koch, A., Lenski, U., Harttig, U., Roske, Y., Heinemann, U. & Hofmann, K. P. (2008). An approach to quality management in structural biology: biophysical selection of proteins for successful crystallization. J. Struct. Biol. 162, 451–459.
Nollert, P. (2004). Lipidic cubic phases as matrices for membrane protein crystallization. Methods, 34, 348–353.
Ostermeier, C., Iwata, S., Ludwig, B. & Michel, H. (1995). F-V fragment mediated crystallization of the membrane-protein bacterial cytochrome-C-oxidase. Nat. Struct. Biol. 2, 842–846.
Otálora, F., Garcia-Ruiz, J. M., Gavira, J. A. & Capelle, B. (1999). Topography and high resolution diffraction studies in tetragonal lysozyme. J. Cryst. Growth, 196, 546–558.
Otálora, F., Gavira, J. A., Ng, J. D. & Garcia-Ruiz, J. M. (2009). Counterdiffusion methods applied to protein crystallization. Prog. Biophys. Mol. Biol. 101, 26–37.
Papanikolau, Y. & Kokkinidis, M. (1997). Solubility, crystallization, and chromatographic properties of macromolecules strongly depend on substances that reduce the ionic strength of the solution. Protein Eng. 10, 847–850.
Peat, T. S., Christopher, J. A. & Newman, J. (2005). Tapping the Protein Data Bank for crystallization information. Acta Cryst. D61, 1662–1669.
Price, W. N., Chen, Y., Handelman, S. K., Neely, H., Manor, P., Karlin, R., Nair, R., Liu, J., Baran, M., Everett, J., Tong, S. N., Forouhar, F., Swaminathan, S. S., Acton, T., Xiao, R., Luft, J. R., Lauricella, A., DeTitta, G. T., Rost, B., Montelione, G. T. & Hunt, J. F. (2009). Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Nat. Biotechnol. 27, 51–57.
Provost, K. & Robert, M.-C. (1995). Crystal growth of lysozymes in media contaminated by parent molecules: influence of gelled media. J. Cryst. Growth, 156, 112–120.
Pusey, M. L., Liu, Z. J., Tempel, W., Praissman, J., Lin, D., Wang, B. C., Gavira, J. A. & Ng, J. D. (2005). Life in the fast lane for protein crystallization and X-ray crystallography. Prog. Biophys. Mol. Biol. 88, 359–386.
Pusey, M. L., Paley, M. S., Turner, M. B. & Rogers, R. D. (2007). Protein crystallization using room temperature ionic liquids. Cryst. Growth Des. 7, 787–793.
Qi, J., Wakayama, N. I. & Ataka, M. (2001). Magnetic suppression of convection in protein crystal growth processes. J. Cryst. Growth, 232, 132–137.
Ray, W. J. & Puvathingal, J. M. (1985). A simple procedure for removing contaminating aldehydes and peroxides from aqueous solutions of polyethylene glycols and of nonionic detergents that are based on the polyoxyethylene linkage. Anal. Biochem. 146, 307–312.
Ray, W. J. J. & Bracker, C. E. (1986). Polyethylene glycol: catalytic effect on the crystallization of phosphoglucomutase at high salt concentration. J. Cryst. Growth, 76, 562–576.
Reid, B. R., Koch, G. L. E., Boulanger, Y., Hartley, B. S. & Blow, D. (1973). Crystallization and preliminary X-ray diffraction studies on tyrosyl transfer RNA synthetase from Bacillus stearothermophilus. J. Mol. Biol. 80, 199–201.
Rhim, W.-K. & Chung, S. K. (1990). Isolation of crystallizing droplets by electrostatic levitation. Methods, 1, 118–127.
Richard, B., Bonneté, F., Dym, O. & Zaccaï, G. (1995). The MPD-NaCl-H2O system for the crystallization of halophilic proteins. In Archaea, a Laboratory Manual, pp. 149–154. Cold Spring Harbor Laboratory Press.
Riès-Kautt, M. & Ducruix, A. (1991). Crystallization of basic proteins by ion pairing. J. Cryst. Growth, 110, 20–25.
Robert, M.-C., Bernard, Y. & Lefaucheux, F. (1994). Study of nucleation-related phenomena in lysozyme solutions. Application to gel growth. Acta Cryst. D50, 496–503.
Robert, M.-C. & Lefaucheux, F. (1988). Crystal growth in gels: principle and applications. J. Cryst. Growth, 90, 358–367.
Rosenberger, F. (1996). Protein crystallization. J. Cryst. Growth, 166, 40–54.
Rosenberger, F., Vekilov, P. G., Muschol, M. & Thomas, B. R. (1996). Nucleation and crystallization of globular proteins – what do we know and what is missing. J. Cryst. Growth, 168, 1–27.
Salemme, F. R. (1972). A free interface diffusion technique for crystallization of proteins for X-ray crystallography. Arch. Biochem. Biophys. 151, 533–540.
Saridakis, E. & Chayen, N. E. (2009). Towards a `universal' nucleant for protein crystallization. Trends Biotechnol. 27, 99–106.
Sato, T., Yamada, Y., Saijo, S., Hori, T., Hirose, S., Tanaka, N., Sazaki, G., Nakajima, K., Igarashi, N., Tanaka, M. & Matsuura, Y. (2000). Enhancement in the perfection of orthorhombic lysozyme crystals grown in a high magnetic field (10 T). Acta Cryst. D56, 1079–1083.
Sauter, C., Balg, C., Moreno, A., Dhouib, K., Théobald-Dietrich, A., Chênevert, R., Giegé, R. & Lorber, B. (2009). Agarose gel facilitates enzyme crystal soaking with a ligand analog. J. Appl. Cryst. 42, 279–283.
Sauter, C., Dhouib, K. & Lorber, B. (2007). From macrofluidics to microfluidics for the crystallization of biological macromolecules. Cryst. Growth Des. 7, 2247–2250.
Sauter, C., Lorber, B. & Giegé, R. (2002). Towards atomic resolution with crystals grown in gel: the case of thaumatin seen at room temperature. Proteins, 48, 146–150.
Sauter, C., Lorber, B., Kern, D., Cavarelli, J., Moras, D. & Giegé, R. (1999). Crystallogenesis studies on yeast aspartyl-tRNA synthetase: use of phase diagram to improve crystal quality. Acta Cryst. D55, 149–156.
Sauter, C., Ng, J. D., Lorber, B., Keith, G., Brion, P., Hosseini, M. W., Lehn, J.-M. & Giegé, R. (1999). Additives for the crystallization of proteins and nucleic acids. J. Cryst. Growth, 196, 365–376.
Sazaki, G., Moreno, A. & Nakajima, K. (2004). Novel coupling effects of the magnetic and electric fields on protein crystallization. J. Cryst. Growth, 262, 499–502.
Sazaki, G., Okada, M., Matsui, T., Watanabe, T., Higuchi, H., Tsukamoto, K. & Nakajima, K. (2008). Single-molecule visualization of diffusion at the solution-crystal interface. Cryst. Growth Des. 8, 2024–2031.
Sazaki, G., Tsukamoto, K., Yai, S., Okada, M. & Nakajima, K. (2005). In situ observation of dislocations in protein crystals during growth by advanced optical microscopy. Cryst. Growth Des. 5, 1729–1735.
Sazaki, G., Yoshida, E., Komatsu, H., Nakada, T., Miyashita, S. & Watanabe, K. (1997). Effects of a magnetic field on the nucleation and growth of protein crystals. J. Cryst. Growth, 173, 231–234.
Sennhauser, G. & Grütter, M. G. (2008). Chaperone-assisted crystallography with DARPins. Structure, 16, 1443–1453.
Shaw, N., Cheng, C., Tempel, W., Chang, J., Ng, J., Wang, X. Y., Perrett, S., Rose, J., Rao, Z., Wang, B. C. & Liu, Z. J. (2007). (NZ)CH[\cdots]O contacts assist crystallization of a ParB-like nuclease. BMC Struct. Biol. 7, 46.
Shim, J. U., Cristobal, G., Link, D. R., Thorsen, T., Jia, Y., Piattelli, K. & Fraden, S. (2007). Control and measurement of the phase behavior of aqueous solutions using microfluidics. J. Am. Chem. Soc. 129, 8825–8835.
Shu, Z.-Y., Gong, H.-Y. & Bi, R.-C. (1998). In situ measurements and dynamic control of the evaporation rate in vapor diffusion crystallization of proteins. J. Cryst. Growth, 192, 282–289.
Snell, E. H., Helliwell, J. R., Boggon, T. J., Lautenschlager, P. & Potthast, L. (1996). Lysozyme crystal growth kinetics monitored using a Mach–Zehnder interferometer. Acta Cryst. D52, 529–533.
Snell, E. H., Weisgerber, S., Helliwell, J. R., Weckert, E., Hölzer, K. & Schroer, K. (1995). Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Cryst. D51, 1099–1102.
Song, H., Chen, D. L. & Ismagilov, R. F. (2006). Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. Engl. 45, 7336–7356.
Sousa, R. (1995). Use of glycerol, polyols and other protein structure stabilizing agents in protein crystallization. Acta Cryst. D51, 271–277.
Stojanoff, V., Siddons, D. P., Monaco, L. A., Vekilov, P. & Rosenberger, F. (1997). X-ray topography of tetragonal lysozyme grown by the temperature-controlled technique. Acta Cryst. D53, 588–595.
Stojanoff, V., Snell, E. F., Siddons, D. P. & Helliwell, J. R. (1996). An old technique with a new application: X-ray topography of protein crystals. Synchrotron Radiat. News, 9, 25–26.
Stolyarova, S., Saridakis, E., Chayen, N. E. & Nemirovsky, Y. (2006). A model for enhanced nucleation of protein crystals on a fractal porous substrate. Biophys. J. 91, 3857–3863.
Strickland, C. L., Puchalsky, R., Savvides, S. N. & Karplus, P. A. (1995). Overexpression of Crithidia fasciculata trypanothione reductase and crystallization using a novel geometry. Acta Cryst. D51, 337–341.
Stura, E. A., Charbonnier, J.-B. & Taussig, M. J. (1999). Epitaxial jumps. J. Cryst. Growth, 196, 250–260.
Sugahara, M., Kageyama, Y. & Kunishima, N. (2009). A hands-free capillary system for protein crystallography from crystallization to data collection. J. Appl. Cryst. 42, 129–133.
Sugiyama, S., Tanabe, K., Hirose, M., Kitatani, T., Hasenaka, H., Takahashi, Y., Adahi, H., Takano, K., Murakami, S., Mori, Y., Inoue, T. & Matsumura, S. (2009). Protein crystallization in agarose gel with high strength: developing an automated system for protein crystallographic processes. Jpn. J. Appl. Phys. 48, 075502.
Suzuki, Y., Sazaki, G., Miyashita, S., Sawada, T., Tamura, K. & Komatsu, H. (2002). Protein crystallization under high pressure. Biochim. Biophys. Acta, 1595, 345–356.
Taleb, M., Didierjean, C., Jelsch, C., Mangeot, J.-P., Capelle, B. & Aubry, A. (1999). Crystallization of proteins under an external electric field. J. Cryst. Growth, 200, 575–582.
Thakur, A. S., Newman, J., Martin, J. L. & Kobe, B. (2008). Increasing protein crystallization screening success with heterogeneous nucleating agents. Methods Mol. Biol. 426, 403–409.
Thaller, C., Eichele, G., Weaver, L. H., Wilson, E., Karlsson, R. & Jansonius, J. N. (1985). Seed enlargement and repeated seeding. Methods Enzymol. 114, 132–135.
Thomas, B. R., Vekilov, P. G. & Rosenberger, F. (1998). Effects of microheterogeneity in hen egg-white lysozyme crystallization. Acta Cryst. D54, 226–236.
Thomas, D. H., Rob, A. & Rice, D. W. (1989). A novel dialysis procedure for the crystallization of proteins. Protein Eng. 2, 489–491.
Tung, M. & Gallagher, D. T. (2009). The Biomolecular Crystallization Database Version 4: expanded content and new features. Acta Cryst. D65, 18–23.
Van Driessche, A. E. S., Otalora, F., Gavira, J. A. & Sazaki, G. (2008). Is agarose an impurity or an impurity filter? In situ observation of the joint gel/impurity effect on protein crystal growth kinetics. Cryst. Growth Des. 8, 3623–3629.
Van Driessche, A. E. S., Otalora, F., Sazaki, G., Sleutel, M., Tsukamoto, K. & Gavira, J. A. (2008). Comparison of different experimental techniques for the measurement of crystal growth kinetics. Cryst. Growth Des. 8, 4316–4323.
Vaney, M. C., Maignan, M., Riès-Kautt, M. & Ducruix, A. (1996). High-resolution structure (1.33 Å) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from Spacehab-01 mission. Acta Cryst. D52, 505–517.
Veesler, S., Furuta, K., Horiuchi, H., Hiratsuka, H., Ferte, N. & Okutsu, T. (2006). Crystals from light: photochemically induced nucleation of hen egg-white lysozyme. Cryst. Growth Des. 6, 1631–1635.
Vekilov, P. G., Ataka, M. & Katsura, T. (1993). Laser Michelson interferometry investigation of protein crystal growth. J. Cryst. Growth, 130, 317–320.
Vekilov, P. G. & Rosenberger, F. (1996). Dependence of lysozyme growth kinetics on step sources and impurities. J. Cryst. Growth, 158, 540–551.
Vekilov, P. G. & Rosenberger, F. (1998). Protein crystal growth under forced solution flow: experimental setup and general response of lysozyme. J. Cryst. Growth, 186, 251–261.
Vergara, A., Lorber, B., Sauter, C., Giegé, R. & Zagari, A. (2005). Lessons from crystals grown in the Advanced Protein Crystallization Facility for conventional crystallization applied to structural biology. Biophys. Chem. 118, 102–112.
Vergara, A., Lorber, B., Zagari, A. & Giegé, R. (2003). Physical aspects of protein crystal growth investigated with the Advanced Protein Crystallization Facility in reduced-gravity environments. Acta Cryst. D59, 2–15.
Vidal, O., Robert, M.-C., Arnoux, B. & Capelle, B. (1999). Crystalline quality of lysozyme crystals grown in agarose and silica gels studied by X-ray diffraction techniques. J. Cryst. Growth, 196, 559–571.
Vidal, O., Robert, M.-C. & Boué, F. (1998). Gel growth of lysozyme crystals studied by small angle neutron scattering: case of agarose gel, a nucleation promotor. J. Cryst. Growth, 192, 257–270.
Viola, R., Carman, P., Walsh, J., Miller, E., Benning, M., Frankel, D., McPherson, A., Cudney, B. & Rupp, B. (2007). Operator-assisted harvesting of protein crystals using a universal micromanipulation robot. J. Appl. Cryst. 40, 539–545.
Warke, A. & Momany, C. (2007). Addressing the protein crystallization bottleneck by cocrystallization. Cryst. Growth Des. 7, 2219–2225.
Washabaugh, M. W. & Collins, K. D. (1986). The systematic characterization by aqueous column chromatography of solutes which affect protein stability. J. Biol. Chem. 261, 2477–2485.
Weber, B. H. & Goodkin, P. E. (1970). A modified microdiffusion procedure for the growth of single protein crystals by concentration-gradient equilibrium dialysis. Arch. Biochem. Biophys. 141, 489–498.
Wernimont, A. & Edwards, A. (2009). In situ proteolysis to generate crystals for structure determination: an update. PLoS One, 4, e5094.
Wiener, M. (2004). A pedestrian guide to membrane protein crystallization. Methods, 34, 364–372.
Wilson, W. W. (2003). Light scattering as a diagnostic for protein crystal growth – a practical approach. J. Struct. Biol. 142, 56–65.
Yadav, M. K., Gerdts, C. J., Sanishvili, R., Smith, W. W., Roach, L. S., Ismagilov, R. F., Kuhn, P. & Stevens, R. C. (2005). In situ data collection and structure refinement from microcapillary protein crystallization. J. Appl. Cryst. 38, 900–905.
Ye, J. D., Tereshko, V., Frederiksen, J. K., Koide, A., Fellouse, F. A., Sidhu, S. S., Koide, S., Kossiakoff, A. A. & Piccirilli, J. A. (2008). Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc. Natl Acad. Sci. USA, 105, 82–87.
Yonath, A., Müssig, J. & Wittmann, H. G. (1982). Parameters for crystal growth of ribosomal subunits. J. Cell. Biochem. 19, 145–155.
Yoshikawa, H. Y., Murai, R., Sugiyama, S., Sazaki, G., Kitatani, T., Takahashi, Y., Adachi, H., Matsumura, H., Murakami, S., Inoue, T., Takano, K. & Mori, Y. (2009). Femtosecond laser-induced nucleation of protein in agarose gel. J. Cryst. Growth, 311, 956–959.
Zeppenzauer, M. (1971). Formation of large crystals. Methods Enzymol. 22, 235–266.
Zheng, B., Roach, L. S. & Ismagilov, R. F. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125, 11170–11171.
Zhu, D.-W., Lorber, B., Sauter, C., Ng, J. D., Bénas, P., Le Grimellec, C. & Giegé, R. (2001). Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilus aspartyl-tRNA synthetase-1. Acta Cryst. D57, 552–558.
Zulauf, M. (1990). Detergent phenomena in membrane protein crytallization. In Crystallization of Membrane Proteins, edited by H. Michel, ch. 2, pp. 53–72. Boca Raton: CRC Press.