Tables for
Volume G
Definition and exchange of crystallographic data
Edited by S. R. Hall and B. McMahon

International Tables for Crystallography (2006). Vol. G, ch. 1.1, pp. 4-5

Section 1.1.5. The impact of networking on crystallography

S. R. Halla* and B. McMahonb

aSchool of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Perth, WA 6009, Australia, and bInternational Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England
Correspondence e-mail:

1.1.5. The impact of networking on crystallography

| top | pdf |

The growth in power of individual minicomputers inevitably helped the development of computational techniques in crystallography. Yet perhaps a more profound development was networking – the ability to exchange electronic data directly between computers. The laborious procedures for transferring information by manual keystroke or exchange of card decks and magnetic tapes were replaced by error-free programmatic procedures. Initially, data could flow easily between computers in the same laboratory; then colleagues could exchange data between scientific departments on the same campus; and before long experimental results, programs and general communications were flowing freely across national and international networks.

During the 1960s, networking was ad hoc and proprietary, and rarely extended effectively outside the laboratory. By the 1970s, however, a few standard networking protocols were becoming established. These included uucp, which promoted the growth of dial-up networking between university campuses, and TCP/IP, the transport protocol underlying the ARPANET, that would eventually give rise to the dominant Internet with which we are familiar today. The potential for improving the practice of crystallography through the ease of communications afforded by computer networks was very clear. However, the technology was still costly and required much effort and expertise to implement. Even towards the end of the decade, a meeting of protein crystallographers concluded (Freer & Stewart, 1979[link]) that

The possibility and usefulness of establishing a computer network for communication among crystallographic laboratories was discussed. The implications for rapid updating and the ease with which programs and data could be transfered among the groups was clearly recognized by all present; however, immediate implementation of a network was not deemed practical by a majority of the participants.

By the mid-1980s, the establishment of a global computer network was well under way. There was still some diversity of transmission protocols on an international scale: uucp, BITNET and X.25 Coloured Book protocols were still competing with TCP/IP, so that communication between different networks had to be managed through gateways. Nevertheless, there was sufficient standardization that it was feasible to communicate with colleagues world-wide by e-mail, to transfer files by ftp and to log in to remote computers by telnet. E-mail, in particular, allowed for the rapid transmission of ASCII text in an arbitrary format. In many respects, this established a goal for other exchange formats to achieve. The establishment of anonymous ftp sites permitted the free exchange of software and data to any user; no special privileges on the host computer were needed. Such availability of electronic information fitted particularly well with the scientific ethic of open exchange of information.

By the early 1990s, TCP/IP and the Internet dominated international networking. The practices of open exchange of information were developed through a number of initiatives. Gopher (Anklesaria et al., 1993[link]) provided a general mechanism to access material categorized and published from a computerized information store. WAIS (Kahle, 1991[link]), a wide-area information server application designed to service queries conforming to the Z39.50 information retrieval protocol (ANSI/NISO, 1995[link]), provided an effective distributed search engine. The rapid proliferation of new techniques for searching and retrieving information from the Internet was capped in the mid-1990s by the rapid growth in sites implementing hypertext servers (Berners-Lee, 1989[link]). The World Wide Web had become a reality.

The increasing access to global network facilities during the 1980s led to a growing interest among crystallographers in submitting manuscripts to journals electronically, especially for small-molecule structure studies. The Australian delegation at the 1987 General Assembly of the XIVth IUCr Congress in Perth proposed that IUCr journals (specifically Acta Crystallographica) should be able to accept manuscripts submitted electronically. It was argued that this would reduce effort on the part of the authors and the journal office in preparation and transcription of manuscripts, and as a consequence reduce costs and transcription errors and simplify data-validation approaches. The acceptance of this General Assembly resolution led to the creation of a Working Party on Crystallographic Information (WPCI), which had as its mandate the investigation of possible approaches to enable the electronic submission of crystallographic research publications.


ANSI/NISO (1995). Information retrieval (Z39.50): Application service definition and protocol specification. Z39.50-1995. .
Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey, D. & Alberti, B. (1993). The Internet gopher protocol (a distributed document search and retrieval protocol). RFC 1436. Network Working Group. .
Berners-Lee, T. (1989). Information management: a proposal. Internal report. Geneva: CERN. .
Freer, S. T. & Stewart, J. (1979). Computer programming for protein crystallographic applications, University of California at San Diego, 28–29 November 1978. J. Appl. Cryst. 12, 426–427.
Kahle, B. (1991). An information system for corporate users: wide area information servers. Thinking Machines technical report TMC-199. See also Online, 15, 56–60.

to end of page
to top of page