
3. CIF DATA DEFINITION AND CLASSIFICATION

sible to write a program that can deduce the structure of a standard
reference within an undifferentiated reference list (provided the
journal guidelines have been followed by the author) to the extent
that enough information can be extracted to add hyperlinks to ref-
erences using a cross-publisher reference linking service such as
CrossRef (CrossRef, 2004). Therefore, in practice, IUCr journals
still ask the author of an article to supply their reference list in the
_publ_section_references field, rather than using the apparently
more useful _citation_ fields. It remains to be seen whether this
is the best strategy in the long term.

In more technical topic areas, the details of an experimen-
tal instrument could be described by a huge number of possible
data names, ranging from the manufacturer’s serial number to the
colour of the instrument casing. However, many of these details are
irrelevant to the analysis of the data generated by the instrument,
so the characteristics of an instrument that are assigned individ-
ual data names are typically just those parameters that need to be
entered in equations describing the calibration or interpretation of
the data it generates.

3.1.7.2. Category ‘special details’ fields

When the specific items in a particular topic area that need to
be recorded under their own data names have been decided, there
is likely to be other information that could be recorded, but is felt
to be irrelevant to the immediate purposes of the data collection
and analysis. It is good practice to provide a place in the CIF for
such additional information; it encourages an author to record the
infomation and permits data mining at a later stage. Each cate-
gory typically contains a data name with the suffix _details (or
_special_details) which identifies a text field in which addi-
tional information relating to the category may be stored. This
field often contains explanatory text qualifying the information
recorded elsewhere in the same category, but it might contain
additional specific items of information for which no data name
is given and for which no obvious application is envisaged. This
helps to guard against the loss of information that might be put to
good use in the future. Of course, if a *_details field is regularly
used to store some specific item of information and this informa-
tion is seen to be valuable in the analysis or interpretation of data
elsewhere in the file, there is a case for defining a new, separate tag
for this information.

3.1.7.3. Construction of data names

Since a dictionary definition contains all the machine-readable
attributes necessary for validating the contents of a data field, the
data name itself may be an arbitrary tag, devoid of semantic con-
tent. However, while dictionary-driven access to a CIF is useful in
many cases, there are circumstances where it is useful to browse
the file. It is therefore helpful to construct a data name in a way that
gives a good indication of the quantity described. From the begin-
ning, CIF data names have been constructed from self-descriptive
components in an order that reflects the hierarchical relationship of
the component ideas, from highest (most general) level to lowest
(most specific) level when read from left to right.

In a typical example from the core CIF dictionary, the data name
_atom_site_type_symbol defines a code (symbol) indicating the
chemical nature (type) of the occupant of a location in the crystal
lattice (atom_site). The equivalent data name from the mmCIF
dictionary, _atom_site.type_symbol, explicitly separates the cat-
egory to which the data name belongs from its more specific qual-
ifiers by using a full stop (.) instead of an underscore (_). While
this use of a full stop is mandated in DDL2 dictionaries, it should

_database_code_CSD ’VOBYUG’

(a)

_database_2.database_id ’PDB’
_database_2.database_code ’5HVP’

(b)

Fig. 3.1.7.1. Alternative quantities described (a) by data-name extension (core dic-
tionary) or (b) by paired data names (mmCIF dictionary).

nevertheless be considered a convenience, since the category mem-
bership is explicitly listed in the dictionary definition frame for
every data name.

However, it may not always be easy to establish the best
order of components when constructing a new data name. In
the JOURNAL category, there was initially some uncertainty about
whether to associate the telephone numbers of different contact
persons by appending codes such as _coeditor and _techeditor

to a common base name. In the end, the order of components
was reversed to give names like _journal_coeditor_phone and
_journal_techeditor_phone. Examining the JOURNAL category
in the core CIF dictionary will show why this was done. Similarly,
the extension of geometry categories to include details of hydro-
gen bonding went through a stage of discussing adding new data
names to the existing categories, but with suffixes indicating that
the components were participating in hydrogen bonding, before it
was decided that a completely new category for describing all ele-
ments of a hydrogen bond was justified. These examples show that
the correct ordering of components within a data name is closely
related to the perceived classification of data names by category
and subcategory.

Sometimes it is useful to differentiate alternative data items
by appending a suffix to a root data name. For example, the
core dictionary defines several data names for recording the ref-
erence codes associated with a data block by different databases:
_database_code_CAS, _database_code_CSD etc. This is conve-
nient where there are two or three alternatives, but becomes
unwieldy when the number of possibilities increases, because
new data names need to be defined for each new alternative
case. A better solution is to have a single base name and a
companion data item that defines which of the available alter-
natives the base item refers to. The mmCIF dictionary follows
this principle: the category DATABASE_2 contains two data names,
_database_2.database_code (the value of which is an assigned
database code) and _database_2.database_id (the value of
which identifies which of the possible databases assigned the code)
(Fig. 3.1.7.1).

Note the distinction between a data name constructed with a suf-
fix indicating a particular database, and a data name which incor-
porates a prefix registered for the private use of a database. The
data name _database_code_PDB is a public data name specifying
an entry in the Protein Data Bank, while _pdb_database_code is
a private data name used for some internal purpose by the Protein
Data Bank (see Section 3.1.8.2).

3.1.7.4. Parsable data values versus separate data names

An advantage of defining multiple data names for the indi-
vidual components of a complicated quantity is that there is
no ambiguity in resolving the separate components. Hence the
Miller indices of a reflection in the list of diffraction measure-
ments are specified in the core dictionary by the group of three
data names _diffrn_refln_index_h, _diffrn_refln_index_k

and _diffrn_refln_index_l. In principle, a single data name

84

International Tables for Crystallography (2006). Vol. G, Section 3.1.7.4, pp. 84–85.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch3o1v0001/sec3o1o7o4/

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

associated with the group of three values in some well defined
format (e.g. comma separated, as h, k, l) could have been defined
instead. However, this would require a parser to understand the
internal structure of the value so that it could parse out the sepa-
rate values for h, k and l.

On the other hand, there are many examples of data values
that are stored as string values parsable into distinct components.
An extreme example is the reference list mentioned in Section
3.1.7.1. More common are dates (_audit_creation_date), chem-
ical formulae (e.g. _chemical_formula_moiety), symmetry oper-
ations (_symmetry_equiv_pos_as_xyz) or symmetry transforma-
tion codes (_geom_bond_site_symmetry_1). There is no definitive
answer as to which approach is preferred in a specific case. In
general, the separation of the components of a compound value
is preferred when a known application will make use of the sep-
arate components individually. For instance, applications may list
structure factors according to a number of ordering conventions
on individual Miller indices. As an extreme example of sepa-
rating the components of a compound value, the mmCIF dictio-
nary defines data names for the standard uncertainty values of
most of the measurable quantities it describes, while the core
dictionary just uses the convention that a standard uncertainty is
specified by appending an integer in parentheses to a numeric
value.

When compound values are left as parsable strings, the pars-
ing rules for individual data items need to be made known to
applications. The DDL1 attribute _type_construct was envis-
aged as a mechanism for representing the components of a data
value with a combination of regular expressions and reference
to primitive data items, but this has not been implemented in
existing CIF dictionaries (or in dictionary utility software). An
alternative approach used in DDL2-based dictionaries defines
within the dictionaries a number of extended data types (expressed
in regular-expression notation through the attribute _item_type_

list.code).
A related problem is how to handle data names that describe an

indeterminate number of parameters. For example, in the modu-
lated structures dictionary an extra eight Miller indices are defined
to span a reciprocal space of dimension up to 11. In principle,
the dimensionality could be extended without limit. According to
the practice of defining a unique data name for each modulation
dimension, new data names would need to be defined as required
to describe higher-dimensional systems. Beyond a certain point
this will become unwieldy, as will the set of data names required
to describe the n2 components of the W matrix for a modulated
structure of dimensionality n (_cell_subsystem_matrix_W_1_1
etc.).

The modulated structures dictionary was constrained to define
extended Miller indices in this way for compatibility with the core
dictionary. Data names describing new quantities that are subject
to similar unbounded extensibility should perhaps refer to values
that are parsable into vector or matrix components of arbitrary
dimension.

3.1.7.5. Consistency of abbreviations

One further consideration when constructing a data name is the
use of consistent abbreviations within the components of the data
name. This is of course a matter of style, since if a data name is
fully defined in a dictionary with a machine-readable attribute set,
the data name itself can be anything. Nonetheless, to help to find
and group similar data names it is best to avoid too many different
abbreviations.

Table 3.1.7.1 lists the abbreviations used in the current pub-
lic dictionaries. Note that there are already cases where different
abbreviations are used for the same term.

3.1.8. Management of multiple dictionaries

So far this chapter has discussed the mechanics of writing dictio-
nary definitions and of assembling a collection of definitions in a
single global or local dictionary file. In practice, the set of data
names in a CIF data file may include names defined in several dic-
tionary files. A mechanism is required to identify and locate the
dictionaries relevant to an individual data file. In addition, because
dictionaries are suitable for automated validation of the contents
of a data file, it is convenient to be able to overlay the attributes
listed in a dictionary with an alternative set that permit validation
against modified local criteria. This section describes protocols for
identifying, locating and overlaying dictionary files and fragments
of dictionary files.

3.1.8.1. Identification of dictionaries relevant to a data file

A CIF data file should declare within each of its data
blocks the names, version numbers and, where appropri-
ate, locations of the global and local dictionaries that con-
tain definitions of the data names used in that block. For
DDL1 dictionaries, the relevant identifiers are the items
_audit_conform_dict_name, _audit_conform_dict_version

and _audit_conform_dict_location, defined in the core dic-
tionary. DDL2 dictionaries are identified by the equivalent
items _audit_conform.dict_name, *.dict_version and *.dict_

location. For convenience, the DDL1 versions will be used in the
following discussion.

The values of the items _audit_conform_dict_name and
_audit_conform_dict_version are character strings that match
the values of the _dictionary_name and _dictionary_version

identifiers in the dictionary that defines the relevant data names.
Validation against the latest version of a dictionary should always
be sufficient, since every effort is made to ensure that a dictio-
nary evolves only by extension, not by revising or removing parts
of previous versions of the dictionary. Nevertheless, including
_audit_conform_dict_version is encouraged: it can be useful to
confirm which version of the dictionary the CIF was initially vali-
dated against.

The data item _audit_conform_dict_location may be used to
specify a file name or uniform resource locator (URL). However,
a file name on a single computer or network will be of use only to
an application with the same view of the local file system, and so
is not portable. A URL may be a better indicator of the location
of a dictionary file on the Internet, but can go out of date as server
names, addresses and file-system organization change over time.
The preferred method for locating a dictionary file is to make use
of a dynamic register, as described in Section 3.1.8.2. Neverthe-
less, _audit_conform_dict_location remains a valid data item
that may be of legitimate use, particularly in managing local appli-
cations.

The following example demonstrates a statement of dictionary
conformance in a data file describing a powder diffraction experi-
ment with some additional local data items:

loop_
_audit_conform_dict_name
_audit_conform_dict_version
_audit_conform_dict_location

cif_core.dic 2.3.1 .
cif_pd.dic 1.0.1 .
cif_local_my.dic 1.0

/usr/local/dics/my_local_dictionary

85 references

http://it.iucr.org/Ga/ch3o1v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

