
5.3. Syntactic utilities for CIF

BY B. MCMAHON

5.3.1. Introduction

Since the introduction of the Crystallographic Information File
(CIF), the crystallographic community has produced a wide vari-
ety of tools and applications to handle CIFs. Many changes have
been made to existing programs to input and output CIF data sets,
and occasionally changes may have been made to internal crys-
tallographic calculations to provide a better fit to the view of the
data expressed by the standard CIF dictionaries. However, for most
crystallographers with an involvement in programming, there is an
understandable tendency to invest the minimum amount of effort
needed to accommodate the new format. Their primary interest
is in the understanding and discovery of the underlying physical
model of a crystal structure.

This chapter reviews several general-purpose tools that have
been developed for CIF to check, edit, extract or manipulate arbi-
trary data items, with little in the way of crystallographic compu-
tation. They are of interest to the end user who wishes to visualize
a structure in three dimensions or submit an article to a journal
but who does not want to be concerned about the details of CIF.
They also include several utilities that are helpful for manipulating
the contents of CIFs without the need to write a large and complex
program. The programmer with an interest in writing complete and
robust CIF applications should look at the comprehensive libraries
described in Chapters 5.4 to 5.6.

Many of the programs described in this chapter operate purely
at the syntactic level; they require no knowledge of the scien-
tific meaning of the data items being manipulated. Others have
some bearing on the semantics of the file contents, either explicitly
through information about data types and interrelationships carried
in external CIF dictionaries, or implicitly through the user’s choice
and deliberate manipulation of items based on an understanding
of what they signify. Nevertheless, most utilities described here
are characterized by an ability to handle CIFs of any content and
provenance. The best example of a program able to handle arbi-
trary CIFs at a purely syntactic level is Star Base (Spadaccini &
Hall, 1994), described in Chapter 5.2.

It should be noted that not all the programs described here are
fully compliant with the specification of Chapter 2.2, and others
have implementation restrictions or known bugs. Many, especially
the older programs, are no longer actively supported and need to
be handled with care. However, they are included here for the
record, and because they may provide useful ideas and sugges-
tions to future developers in an area that can still accommodate a
wider range of tools for different uses.

5.3.2. Syntax checker

A CIF must conform to a subset of the syntax rules of a general
STAR File (Chapter 2.1), but with the additional restrictions and
conventions described in Chapter 2.2. The syntax is rather simple
and robust subroutines to create CIFs may easily be written by

Affiliation: BRIAN MCMAHON, International Union of Crystallography, 5 Abbey
Square, Chester CH1 2HU, England.

computer programmers. However, the use of ASCII character sets,
deliberately expressive data names and simple layout conventions
both permit and encourage users to edit the files with general text
editors that cannot guarantee to retain syntactic integrity. Conse-
quently, there is a definite use for a simple program that can check
whether a file conforms to the specified syntax.

It is worth mentioning that programmable text editors such as
emacs may be supplied with rules that can check syntax as a file
is edited. A simple rule set (known as a mode file) has been devel-
oped (Winn, 1998) to indicate the different components of a CIF,
as a first step towards a syntax-checking emacs mode.

The Star.vim utility of Section 5.2.4 provides a similar function-
ality for editing in the vim environment, although it is not capable
of validation directly; nevertheless, the appearance of unexpected
or irregular highlighted text can draw the user’s attention to syntac-
tic problems, a feature that is also useful in more extended editors
such as enCIFer (Section 5.3.3.1).

5.3.2.1. vcif

A simple syntax checker for CIF is the program vcif (McMa-
hon, 1998), which scans a text file and outputs informative mes-
sages about apparent errors. While conservative CIF parsing soft-
ware will quit upon finding an error, vcif will attempt to read to the
end of the file and list all clearly distinguished errors. However, its
interpretation of errors depends on a close adherence to the CIF
syntax specification and makes no assumption about the intended
purpose of the character strings it reads. In consequence, a single
logical error such as failing to terminate a multiple-line text string
may cause the program to report many other apparent errors as it
proceeds out of phase through the rest of the file.

5.3.2.1.1. How to use vcif

The program may be run under Unix or DOS by typing

vcif filename

where filename is the name of the file to test. If filename is given
as the hyphen character -, the program will read standard input.
Standard input will also be read if no file name is supplied; this
allows the program to be used in a pipeline of commands.

A number of options may be supplied to the program to modify
its behaviour. Without these options (i.e. invoked as above) a brief
but informative message is written to the standard output channel
for each occurrence of what the program perceives to be a syntax
error.

For example, for the incorrect sample file of Fig. 5.3.2.1(a), the
output is listed in Fig. 5.3.2.1(b).

Note that the sequence number of the line in which the error
occurs is printed. The summary error message is output on a single
line (longer lines have been wrapped and indented in Fig. 5.3.2.1
for legibility). Where the type of error necessarily affects only a
single line, the program can recover and correctly identify errors
on subsequent lines. Where possible, unexpected character strings
are printed to help the user to identify the error. No attempt is made
to assign any meaning to the data names or the data values in the

499

International Tables for Crystallography (2006). Vol. G, Chapter 5.3, pp. 499–525.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch5o3v0001/

5. APPLICATIONS

Sample CIF with syntax errors

_date ’Monday 12 April 1999

_cell_length_a 7.514 (3)
_cell_length_b 9.467 (2)

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance

O1 C2 1.342(4)
O1 C5 1.439 (3)

_example_comment
; The purpose of this example is to indicate how vcif

describes some of the syntax errors it finds.

(a)

ERROR: No data block code before dataname at line 3
ERROR: Single-quoted character string does not

terminate at line 4
ERROR: Unexpected string ((3)) at line 5
ERROR: Unexpected string ((2)) at line 6
ERROR: Number of loop elements not multiple of

packetsize at line 15
ERROR: Text field at end of file does not terminate

(b)

Fig. 5.3.2.1. (a) An example CIF with a number of syntax errors and (b) the report
of the errors produced by vcif.

file. Hence the same logical error (the detachment of a standard
uncertainty in parentheses from its parent value) is indicated var-
iously as an unexpected text string or as an extraneous loop item,
depending on where it occurs in the file. Indeed, in the case of the
incorrect number of loop elements, the program makes no attempt
to identify which data value or values in the loop might be in error:
it simply counts the number of values in a loop and complains
when this is not a multiple of the number of data names declared
in the loop header.

5.3.2.1.2. Options to vcif

A number of options may be supplied as command-line argu-
ments to modify the output from vcif.

A more complete account is given of each error on its first occur-
rence when the program is invoked with the ‘-v’ option. The out-
put listing explains in more detail what the breach of syntax is and
sometimes suggests how misunderstandings of the file structure
result in such breaches (Fig. 5.3.2.2).

Each error message is prefaced by the word ‘ERROR’ (or occa-
sionally another phrase such as ‘WARNING’ or ‘STAR ERROR’).
Three chevrons preface a printout of the beginning of the trou-
blesome line. Then an expanded description of the error is given,
prefaced by three asterisks, on the first occurrence of each dis-
tinct error. In this mode, only the first 20 errors are listed (the
assumption is that this mode is best suited to novices, who should
identify and correct each error in turn and would not want to be
swamped by large numbers of error messages arising from a single
error). More errors may be reported by using the ‘-e’ command-
line option.

The quiet option (vcif -q) outputs no error messages but instead
returns to the calling environment an integer giving the total num-
ber of errors found. This option allows scripts or external programs
to use vcif as a silent test of whether a file has any syntax errors.

ERROR: No data block code before dataname at line 3
>>> "_date"
*** A data block MUST begin with a data_something

declaration.
ERROR: Single-quoted character string does not

terminate at line 4
>>> "_cell_length_a"
*** The indicated line appears to contain some word

or words introduced by a single quote, but not
terminated with a matching single quote.

ERROR: Unexpected string ((3)) at line 5
*** There is an unexpected word or number as

indicated. This may be because a loop is
intended but the loop_ keyword has been missed
out; or a phrase with several words is not
enclosed in matching delimiting quote marks; or
a text field (extending over several lines) is
not properly closed with a final semicolon; or
a data_ block header has not yet been seen.

ERROR: Unexpected string ((2)) at line 6
>>> "_cell_length_b"
ERROR: Number of loop elements not multiple of

packetsize at line 15
>>> "_example_comment"
*** A loop_ header defines a list of datanames. The

values following this header are assigned in
sequence with the datanames in the header, so
each packet of information (or row in the table
of values defined by the loop structure) must
have the same number of values as there are
datanames declared in the loop header. Common
reasons for this error include: omission of a
value where the associated data are absent
(insert . or ? as placeholders); numeric values
where the standard uncertainty (or e.s.d) has
come adrift from its associated value (e.g.
10.925 (2)); multi-word phrases or text entries
that are not properly delimited with quote
marks or initial semicolons.

ERROR: Text field at end of file does not terminate
>>> ""
*** Is the CIF complete?

Fig. 5.3.2.2. Verbose error listing from vcif when run with the ‘-v’ option on the
example of Fig. 5.3.2.1.

A related option, vcif -b, counts errors and returns the result as
an integer to the calling environment, as in the previous case; but
additionally outputs a list of all the data-block codes in the file.
While adding nothing to the syntax-checking function of the pro-
gram, this provides a useful small utility for simply listing data-
block names.

Although intended for use with the restricted STAR File syn-
tax permitted for CIF (Chapter 2.2), vcif may also be used with
the ‘-s’ option to check the syntax of CIF dictionary files, which
may include save frames. The program does not, however, handle
nested loop structures.

The program will flag as an error any line of greater than 80
characters length (the original limit in the CIF version 1.0 spec-
ification; see Chapter 2.2), but this behaviour may be overridden
with the ‘-l’ option. If used, only lines longer than the specified
number of characters will be reported and the reports of such lines
will be prefaced with the word ‘WARNING’. Likewise, the ‘-w’
option may be used to override the CIF version 1.0 restriction of
data names and data-block codes to 32 characters.

Other options allow the program to write extensive debugging
information to a user-specified file, indicating its internal state
upon processing each token of input, and to list either a brief sum-
mary of how it may be used or its current version number.

500

5.3. SYNTACTIC UTILITIES FOR CIF

5.3.2.1.3. Limitations of vcif

Because the program is testing certain properties of character
strings within logical lines of a file, it stores a line at a time for
further internal processing. If a line contains a null character (an
ASCII character with integer value zero), this will be taken as the
termination of the string currently being processed, according to
the normal conventions in the C programming language for mark-
ing the end of a text string. In this case, subsequent error messages
may not reflect the real problem. The null character, of course, is
not allowed in a CIF.

vcif also interprets syntax rules literally, so a misplaced semi-
colon might mean that a large section of the file is regarded as a
text field and too many or too few error messages are generated.
This can make a correct interpretation of the causative errors diffi-
cult for a novice user.

5.3.3. Editors with graphical user interfaces

A useful class of editing tool is the graphical editor, where dif-
ferent types of access can be provided through icons, windows or
frames, menus and other graphical representations. The availabil-
ity of standard instructions through drop-down menus makes such
tools particularly suitable for users who are not expert on the fine
details of the file format. The ability within the program to restrict
access to particular regions of the file makes it easier to modify the
contents of a CIF without breaking the syntax rules. A small but
growing number of such editors are becoming available, such as
those described here.

5.3.3.1. enCIFer

The program enCIFer (Allen et al., 2004) has been developed
as a graphical utility designed to indicate clearly to a novice user
where errors are present in a CIF, to permit interactive editing
and revalidation of the file, and to allow visualization of three-
dimensional structures described in the file. In its early releases,
it was targeted at the community of small-molecule crystallo-
graphers interested in publishing structures or depositing them
directly in a structure database. Version 1.0 depended on a com-
piled version of the CIF core dictionary, but subsequent versions
allow external CIF dictionaries to be imported. At the time of
publication (2005), development is concentrating on support for
DDL1 dictionaries.

Given its target user base, the purpose of the program is to
permit the following operations within single- or multi-block
CIFs:

(i) Location and reporting of syntax and/or format violations
using the current CIF dictionary.

(ii) Correction of these syntax and/or format violations.
(iii) Editing of existing individual data items or looped data

items.
(iv) Addition of new individual data items or looped data items.
(v) Addition of some standard additional information via two

data-entry utilities prompting the user for required input (‘wiz-
ards’): the publication wizard, for entering the basic bibliographic
information required by most journals and databases that accept
CIFs for publication or deposition; and the chemical and crystal
data wizard, for entering chemical and physical property infor-
mation in a CIF for publication in a journal or deposition in a
database.

(vi) Visualization of the structure(s) in the CIF.
In all cases where data are edited or added, enCIFer can be used

to check the format integrity of the amended file.

Fig. 5.3.3.1. The enCIFer graphical user interface.

5.3.3.1.1. The main graphical window

Fig. 5.3.3.1 is an example of the use of enCIFer to read and
modify a CIF. The figure shows the components of the main win-
dow after a file has been opened. Beneath the standard toolbar that
provides access to operating-system utilities and to the main func-
tions of the program itself is a task bar (here split over two lines)
providing rapid access to a subset of the program’s features. Under
this are two large panes. The pane on the right is the editing win-
dow, where the content of the CIF is displayed and may be mod-
ified. The left-hand pane is a user-selectable view by category of
the data names stored in the CIF dictionary against which the file
is to be validated. At the bottom are two smaller panes. The one
on the right logs the session activities and displays informational
messages. The left-hand pane lists errors and warning notices gen-
erated by the validation system. Errors are labelled by line num-
ber, and selection of a specific message (by a mouse double-click)
scrolls the content of the main text-editing window to that line
number.

Tabs in the middle of the display allow the user to switch
rapidly between the editing mode and a visualization of the three-
dimensional structures described in the CIF.

These components are described more fully below, followed by
a description of the other windows that may be created by a user:
the help viewer, the loop editor and the data-entry wizards.

5.3.3.1.2. The interface toolbar

This toolbar provides menus labelled ‘File’, ‘Edit’, ‘Search’,
‘Tools’ and ‘Help’ that provide the expected functionality of
graphical interfaces: the ability to open, close and save files, store
a list of recently accessed files, spawn help and other windows,
allow searching for strings within the document, allow the user to
modify aspects of the behaviour or the look and feel of the pro-
gram, and provide entry points for specific modes of operation.
The most useful of these utilities can also be accessed from icons
on the task bar. They are discussed in more detail in the following
section.

This main menu is structured in a way familar to users of pop-
ular applications designed for the Microsoft Windows operating

501

5. APPLICATIONS

system, although the enCIFer program runs on a variety of differ-
ent operating systems and machine hardware platforms. Neverthe-
less, the use of a common menu style makes the initial use of the
program much easier for novice users and allows the program to
be effectively used without detailed study of its documentation.

5.3.3.1.3. The task bar

The task bar allows rapid one-click access to the standard oper-
ations of creating a new document, opening, saving or printing
the contents of the current file, copying, cutting and pasting text,
searching for specific text within the document, and undoing or
redoing previous edits.

Two buttons allow insertion of complete text files. One allows
the user to select any file from local or network-mounted file sys-
tems. The other imports a specific file (the location of which may
be specified by the user through the ‘Preferences. . . ’ selection of
the main ‘Edit’ menu). While this specific file may contain any-
thing, it is intended to be a template CIF that a user will tailor to
meet their own requirements. The default provided with the soft-
ware is a standard template distributed by the IUCr for use in sub-
mitting articles to Acta Crystallographica. In either case, the file
is imported at the current editing location and is not subject to val-
idation upon input; the user must manually revalidate the file after
import.

An icon on the task bar allows the user to run a validation proce-
dure. This icon will be dimmed (indicating that the validation pro-
cedure may not be run) unless the user has modified the contents
of the CIF. Other icons on the task bar behave in the same manner,
allowing the procedures with which they are associated to be exe-
cuted only under appropriate circumstances. Thus, for example,
the looped list editor is not invoked unless the user clicks within
the reserved word loop_ in a list header.

Similarly, the ‘help’ icon in the task bar is dimmed unless the
user has selected a data name in the CIF; when this is done, the
icon is activated and clicking on it launches a help window con-
taining the CIF dictionary definition of the data item.

The task bar also contains a drop-down menu listing all the data-
block names in the current file. When the user selects one of the
data-block names, the edit cursor is positioned at the head of the
matching data block in the edit window. This is a rapid and effi-
cient way of navigating within large and complex files.

The other buttons provided on the task bar allow the user to:
reduce or increase the font size in the editing window; create a
new looped list within the loop-editing window; invoke the pub-
lication and data-entry wizards; and hide or reveal the dictionary
browse window pane.

Users may modify the appearance of the task bar to retain or
conceal subsets of these icons, depending on which they find most
useful.

5.3.3.1.4. The main edit pane

The main edit pane is a text-editing area where the user may
directly modify the content of a CIF. Colours and font styles are
used to indicate different syntactic elements. The details of the
colours and styles may be modified to suit the user.

For the novice user, this is perhaps the most immediately helpful
feature offered by this program. When a trailing semicolon is inad-
vertently lost from an extended text field, typical sequential parsers
may interpret succeeding tokens as part of the quoted text and pro-
duce misleading error reports. Within the enCIFer edit window,
all such text is marked up in a specific colour (green by default)
so that the fault is much more obvious to the human eye and its
source much easier to locate.

Two other typographic cues are used to help the user to trace
errors, or to ensure that certain text has been input correctly. Sub-
scripts and superscripts are represented in a smaller typeface (and
in a different colour) so that missing delimiter characters are again
obvious to the eye. Secondly, some special characters in the con-
ventional CIF encoding (such as Greek letters) are displayed in an
appropriate symbol font when the file is first loaded, so that for
example the input string \a is rendered as \α. Note that the back-
slash character is retained, and that the symbol character is not
generated as new text is input or edited. This scheme therefore has
some potential for confusion, but is nevertheless helpful in check-
ing that less obvious special codes have been entered correctly.

The user is free to enter arbitrary text in this pane, possibly
breaking CIF syntax rules in the process. Only when the revali-
dation process is manually invoked will the file be rescanned and
any errors reported.

5.3.3.1.5. The dictionary browse pane

The upper left-hand pane in Fig. 5.3.3.1 illustrates the dictionary
browser, an optional graphical view of the contents of the CIF dic-
tionary against which the file is being validated. (The presence or
absence of this pane is toggled from an icon in the task bar.) Box
icons represent the contents of categories, and the tree of category
containers may be expanded or collapsed as desired to show indi-
vidual items within categories.

A dictionary view is generated for each separate data block in
the CIF. Within the dictionary view of an individual data block,
those data items present in the data block are shown in bold; other
items defined in the dictionary but absent from the current data
block appear in a lighter colour.

Within the dictionary browse pane, a user may select (with a
click of the appropriate mouse button) a menu of three options
which depend on whether the data name is present or absent in the
data block. If present, one option positions the cursor in the edit-
ing window at the location of the selected data item. If the item is
absent from the data block, the user is given the option to paste the
data name into the editing window at the current insertion point.
The other options (in both cases) are to copy the data name to the
clipboard or to open the help window with the CIF dictionary def-
inition of the selected item.

5.3.3.1.6. The error notification pane and logging area

The lower left-hand pane of Fig. 5.3.3.1 illustrates typical error
notices generated by the parser when the validation process is
invoked. At present, the classification of the severity of errors is
guided by the editorial requirements of databases and journals, and
does not necessarily match the formal errors dictated by the CIF
specification. It is likely that this will change in future releases as
validation is driven increasingly by the dictionaries rather than by
hard-coded subroutines.

A convenient feature is that double-clicking on the line number
in the error report relocates the cursor to that line in the editing
pane. At present, error messages are listed by line only – they are
not grouped by data block.

The user has a small number of options to control error notifi-
cation. The choice of the maximum number of consecutive error
lines to permit before error checking is abandoned is a useful way,
especially for novices, to reduce the amount of output generated
by severe syntax errors and to focus on repairing individual errors.
The user may also specify a file that contains a set of CIF data
names which are considered mandatory components of a partic-
ular file. Absence of any of these items from the current data

502

5.3. SYNTACTIC UTILITIES FOR CIF

Fig. 5.3.3.2. The enCIFer loop editor.

block is flagged as an error. The program log in the lower right-
hand part of the program window records the history of the user’s
interactions with the file during the current editing session.

Information is written to the status bar (the lower margin of the
window) to indicate the location by line and column number of the
editing cursor.

5.3.3.1.7. The loop editor

The program has a useful spreadsheet-style editor for looped
lists (Fig. 5.3.3.2). A particular benefit of this style of display is
that the spreadsheet cells are arranged in a rectangular grid, so that
visual scans can often detect deviations from a pattern of values
within a column, thus making it easy to identify placement errors
where values have been omitted or inadvertently conjoined. Such
errors are not always obvious by direct visual inspection of a CIF,
where the layout of a looped list need not follow any regular pat-
tern.

The buttons to add or delete columns allow for the straightfor-
ward addition or deletion of data items from the loop. If the user
selects the ‘New Column’ button, a small pop-up window helpfully
provides a view of the associated dictionary (in the same hierar-
chical category-based tree view of the dictionary browser pane) to
help the user select the required new data name. The ‘Insert Cell’
and ‘Delete Cells’ buttons are convenient tools for the realignment
of rows and columns where values have been omitted or misplaced.

The loop editor is invoked from one of two buttons in the task
bar, allowing either the creation of a new looped list or the modifi-
cation of an existing one. As with the application as a whole, there
is no dynamic validation of input; the new list must be saved and
the entire CIF then manually revalidated.

Fig. 5.3.3.3. The enCIFer publication data wizard. Information about the title and
authors of an article to be submitted for publication is requested through a
sequence of linked dialogue boxes.

Fig. 5.3.3.4. The enCIFer chemical and crystal data wizard.

5.3.3.1.8. The publication and chemical and crystal data wizards

The user may invoke data-entry ‘wizards’, subordinate pro-
grams that prompt for particular data items useful for the publi-
cation of a crystal structure report or for the deposition of a crystal
structure in a database. This is the kind of information that might
be requested in the Notes for authors for a journal, and it is help-
ful if the information is routinely requested from inexperienced
authors during normal use of the software. The data-entry tools are
known as ‘wizards’ because they will utilize information already
in the file.

Hence, as shown in Fig. 5.3.3.3, details of an article’s contact
author are retrieved from the CIF and used to seed a list of con-
tributing authors. As the address for each author is entered, the
program makes each new address available as a stored record for
easier input of additional information.

Fig. 5.3.3.4 demonstrates the same approach to encouraging
authors to supplement information already in the CIF with related
chemical (or crystal) data not usually provided by the CIF gen-
erators embedded in crystallographic structure determination pro-
grams.

5.3.3.1.9. The visualization window

A final useful feature of enCIFer is its ability to visualize the
three-dimensional structure of molecules described in the data
blocks of a CIF. Fig. 5.3.3.5 demonstrates crystal packing with

Fig. 5.3.3.5. Visualization of a molecular and crystal three-dimensional structure
with enCIFer.

503

5. APPLICATIONS

a space-filling molecular representation, and the drop-down menu
indicates some of the options available to modify the appearance of
the graphics. The molecular-graphics library used by the program
is part of the larger database interface software package developed
at the Cambridge Crystallographic Data Centre. In the present ver-
sion, the visualizer is run only upon initial parsing of the input
CIF, and therefore does not provide an ability to track visually the
molecular changes associated with direct modification of the con-
tents of the file.

5.3.3.2. CIFEDIT

The CIFEDIT program (Toby, 2003) is written in Tcl/Tk
(Ousterhout, 1994) and provides an application for viewing and
editing CIFs. The code is written in such a way that it can be
embedded into larger programs to provide a CIF-editing interface
within larger application suites.

The current version of the program is able to validate CIFs
against both DDL1 and DDL2 dictionaries, although the DDL2
validation is currently less complete than for DDL1. For example,
numeric values are checked against permitted enumeration ranges
only for DDL1. Dictionaries are accessed through index files, each
of which contains Tcl data structures that point to the location of
the definitions in the dictionary file itself and store information
such as units and enumeration ranges that can be used for data val-
idation. A utility provided with the program allows a user to gener-
ate new index files when new versions of the dictionaries become
available. It is intended that dictionary indexing will be incorpo-
rated within the main application in the next program release, so
that interactive dictionary selection will be possible.

When a CIF is opened, the contents are parsed and validated
against one or more user-selected dictionaries. Errors are displayed
in a pop-up window and may be written to a file or viewed within
the application. The main program window displays the contents
of the CIF in two primary panes (Fig. 5.3.3.6). In the left-hand
pane, a tree structure shows the data blocks in the file and the data
names present in each block. The data blocks may be expanded or
collapsed by the user, to present an overview or a detailed view
of the data structure of the file. Underneath the icon represent-
ing the data block, non-looped data items are listed alphabetically.
The figure demonstrates how a single value may be selected in the
left-hand pane (_cell_length_a) and displayed in the main win-
dow. Physical units for the selected quantity are extracted from the
corresponding dictionary definition and presented alongside the
numeric value. The dictionary definition may also be displayed in a
separate pop-up window using the ‘Show CIF Definitions’ button.

Fig. 5.3.3.6. The use of CIFEDIT to display and alter the contents of a CIF; here a
non-looped data item is shown.

Fig. 5.3.3.7. Row-based loop editing with CIFEDIT; here loop 2 (comprising the
ATOM SITE category) has been selected by the user; the editing cursor begins
at row 1 of the loop.

The program may be run in two modes: a ‘browse’ mode, where
the selected value is displayed in the main pane, but may not be
altered; and an ‘edit’ mode (as in the example) where the value
appears in an editable text widget.

Data loops in the CIF are displayed after the alphabetical list
of non-looped items. The loops are numbered sequentially from
zero and an indication of the loop category is given in parentheses
in the tree-view window. The loop ‘branches’ of the tree may be
expanded or collapsed as the user wishes.

Loops may be viewed and edited in two ways: by row or by col-
umn. If the user selects the loop title node in the hierarchical view
pane, the loop is presented by row, starting in sequence at row 1
(Fig. 5.3.3.7). Other rows may be selected by using the address
box in the lower-right-hand part of the window. Alternatively, if
the user selects an individual data name within the loop represen-
tation in the hierarchical view, all instances of that data item within
the loop are displayed in the main pane. (In practice the number of
values shown is constrained to a maximum number that the user
may choose, so that the application does not run out of memory if
there are very large loops.)

For items with a restricted set of permitted values in the dictio-
nary, the editing function allows the user to select only one of the
permitted options via a drop-down menu.

While the application is intended to be used in this structured
and itemized mode, there is an option to open the entire CIF in a
text-editing window if there are errors that cannot be handled in the
normal mode. This is not recommended, but is occasionally conve-
nient. While this free-text editing mode is in operation, the ability
to modify the file through the structured editing pane is suspended
to avoid conflicting changes.

After any change has been made, the user may revalidate the
file. This is strongly recommended after making changes in the
free-text editing mode.

5.3.3.3. HICCuP

The program HICCuP (Edgington, 1997) was an early graphi-
cal utility developed at the Cambridge Crystallographic Data Cen-
tre for interactive editing and validation of a CIF. It is no longer
supported, having been replaced by enCIFer (Section 5.3.3.1).
Nevertheless, it contained some interesting features and is of
potential interest to developers using multiple-platform script-
ing languages. It was implemented in the Python language (van
Rossum, 1991) and required that Tcl/Tk (Ousterhout, 1994) be
also available on the host computer. The name of the program
is an acronym for ‘High-Integrity CIF Checking using Python’.

504

5.3. SYNTACTIC UTILITIES FOR CIF

HICCuP was designed to allow users of the Cambridge Structural
Database (Allen, 2002) to check structures intended for deposition
in the database and therefore included a range of additional content
checks specific to this purpose. These could, however, be disabled
by the user.

5.3.3.3.1. Interactive use of the program

5.3.3.3.1.1. The control window

Because HICCuP was designed as an interactive tool, upon
invocation it presented to the user a control window from which
CIFs could be selected for analysis and in which summary results
of the program’s operations were logged. Fig. 5.3.3.8 shows an
example of the control window after a single CIF has been loaded.

In the large frame below the file-entry field are listed the data
blocks found by the program. The names are highlighted in var-
ious colours according to the highest level of severity of errors
found within the corresponding data block.

Because the utility was designed for processing large amounts
of CIF data for structural databases, it was considered useful to
supply a compact visual indicator of the progress of the program
through a large file. This takes the form of a grid of rectangular
cells, one column for each data block present. Each column con-
tains three cells, which monitor the performance of checks on the
file syntax, conformance against a CIF dictionary, and other checks
specific to the requirements of the Cambridge Crystallographic
Data Centre. As each data block was checked, the corresponding
cells were coloured according to the types of error found. Differ-
ent colours were used to indicate: no errors; structure errors in the
initial syntax tests; dictionary errors; or a deviation from certain
conventions used by journals and databases in naming datablocks.

The large frame at the bottom of the control window provides a
text summary of the same information, listing the number of errors
found.

Check boxes and an ‘Options. . . ’ button allowed some config-
urability of checks by the user.

5.3.3.3.1.2. The report frame and edit window

The user could get more details of the reported errors by click-
ing on the name of the data block of interest in the control window.
The text of the CIF would appear in a new window positioned

Fig. 5.3.3.8. Control window of the HICCuP application.

Fig. 5.3.3.9. HICCuP edit window and error description.

at the point where the program has detected the first error and a
terse statement of the type of error, with a longer explanation of its
nature and possible cause, would be given.

In the example of Fig. 5.3.3.9, the program has detected that
there is a missing text delimiter (a semicolon character), and posi-
tions the text in the upper frame at the likely location of the error.
The program has attempted to localize the region where the error
may have occurred. Because a text field might contain arbitrary
contents, including extracts of CIF content, it is impossible to
be sure on purely syntactic grounds of the nature of the error.
Nonetheless, some heuristic rules serve to identify the author’s
likely intent in the majority of cases. So, in this example, the
user may scan the file contents in the vicinity of the line high-
lighted by the program and find the error within a few lines (in this
example an incorrectly terminated _publ_author_footnote entry
beginning ‘Current address:’).

For this example, the more literal vcif error analysis provides
only the message

ERROR: Text field at end of file does not terminate

The upper frame in this window is an editable window, so that
the user could modify the text and revalidate the current data block.
Only when a satisfactorily ‘clean’ data block was obtained were
the changes saved, and the modified data block written back into
the original file.

5.3.3.3.1.3. Dictionary browsing

An additional useful feature of the program was its interactive
link to a CIF dictionary file (Fig. 5.3.3.10). The browser win-
dow contains the definition section of the dictionary referring to

Fig. 5.3.3.10. HICCuP dictionary browser window.

505

5. APPLICATIONS

the selected data name and hyperlinks to definitions of other data
names referred to. Additionally, there is a small text-entry box
allowing a specific definition to be retrieved and an ‘Index’ but-
ton to list all available definitions.

5.3.3.3.2. Options

As already mentioned, the user could modify the detailed mode
of operation of the program. Any or all of the ‘initial’, ‘dictionary’
or ‘other’ checks could disabled.

The ‘dictionary’ checks could be modified by the user through
the ‘Options’ button of the main control window. The CIF dictio-
nary for validation could be specified; the dictionary itself had to
be translated from a source file in DDL format to a Python data
structure.

The types of dictionary-based validation supported by the pro-
gram were:

(i) List Status (checking whether a data value should be included
in a looped list),

(ii) Limited Enumeration Options (checking that a data value is
one of the permitted codes where such a constraint exists),

(iii) Incorrect Enumeration Case [a special case of (ii), where a
data value matches a permitted code except for incorrect alphanu-
meric case],

(iv) Enumeration Range (the data value falls outside the range
permitted),

(v) Value Type (numb or char) (the data value has the wrong
type),

(vi) List Link Parent (a data item is present within the data block,
but its mandated parent item is not – for example, the data item
_atom_site_aniso_label should not be present without its parent
data item _atom_site_label),

(vii) List Reference (the required data name used to reference
the loop in which the current data name appears is missing),

(viii) Esd Allowable (a data value appears to have a standard
uncertainty value where one is not expected).

The user could also supply the program with a list of data names
that do not appear in the validation dictionary but for which no
warning message should be raised. The program normally flagged
such nonstandard data names as possible errors and suggested
the possible form of a standard data name that might have been
intended. This was useful in catching misspellings of additional
data items entered by hand.

The program could also be run in a batch mode when the objec-
tive was to work through a large volume of CIF data and identify
the data blocks that require attention. This mode of operation is
particularly useful in databases or publishing houses. In this mode,
input is from a named file or from the standard input channel; out-
put is written to standard output or redirected to a results file. The
operation of the program may be controlled by the application of
various command-line flags.

5.3.3.4. Platform-specific editors

As well as the tools described earlier in this section, which are
designed to run under a variety of common operating systems,
there are some applications restricted to users of particular types of
computer. Here we mention two that run in the popular Microsoft
Windows environment on personal computers.

5.3.3.4.1. beCIF

The Windows program beCIF (Brown et al., 2004) is still in
prototype. It is a DDL1-dictionary-driven CIF manipulation tool
that does not require detailed knowledge of CIF or dictionary

Fig. 5.3.3.11. A category view in the beCIF editor of a CIF with navigation by tabs.

structures. It provides a rather different view of the contents of
a CIF from the applications discussed above through an interface
that will be familiar to users of Microsoft Windows applications.
When the application is opened, the user is prompted to provide
the location of a CIF dictionary (at any one time, only a single dic-
tionary file may be loaded). This dictionary is loaded into memory
and used to validate CIFs upon input. As a data file is read, discrep-
ancies from the types and value ranges permitted by the dictionary
are listed in an information window.

The file contents are presented in a number of panels, one
per dictionary category, between which the user may navigate by
selecting the tab with the desired category name (Fig. 5.3.3.11).

At the highest level, tabs allow the user to choose the data block
of interest. Buttons are provided to delete a data block entirely, to
rename it or to create a new data block.

Within each data block, the user may add new categories.
Again, to help the novice user, when the button ‘New Category’
is selected, a list of only those categories described in the current
dictionary but absent from the current data block is presented to
the user. Each category present in the data file is accessed through
its own tabbed display panel.

Where the category contains non-looped data items, values
may be edited within individual text widgets; data items may be
removed by selecting the adjacent check box; or new data items
may be added by selecting the ‘New Data Item’ button to create
a dialogue box offering a choice of the remaining data items in
the dictionary category. Against each data item a button provides
access to a pop-up window containing the relevant dictionary def-
inition.

For a category with looped data, the contents are displayed
in a spreadsheet-style representation, with columns headed by
the matching data name and rows numbered for convenience
(Fig. 5.3.3.12).

The changes requested to the CIF are only effected when the
user selects the ‘Save CIF’ button. Unlike many other of the CIF
editors previously discussed, this program does not make any
effort to retain the initial ordering of the input data, nor does it
preserve comments. The edited CIF may therefore be superficially
very different from the input file; however, the only significant dif-
ferences in content will be those introduced through use of the
editing functions within the application.

5.3.3.4.2. printCIF for Word

The tools described so far emphasize the data content of a CIF.
printCIF for Word (Westrip, 2004), on the other hand, was com-
missioned to help prospective authors of structure reports in the

506

5.3. SYNTACTIC UTILITIES FOR CIF

Fig. 5.3.3.12. Representation by the beCIF editor of looped data within a category
(here ATOM SITE) in spreadsheet style.

IUCr journals to visualize and prepare for publication complete
papers submitted in CIF format. Chapter 5.7 describes the work-
flow and processing of such submissions. Here is given a brief
description of the use of the printCIF software from an author’s
viewpoint.

This application also differs from others discussed in this chap-
ter in that it is rather specific to a particular program environment,
being written as Visual Basic macros embedded in a Microsoft
Word template document. Efforts are under way to provide ver-
sions that can run with other word processors. Nevertheless, Word
is currently sufficiently widespread that the utility is likely to be of
use to a large community.

Typically the author begins by double-clicking on the icon asso-
ciated with the printcif.dot template file. The initial macros are
loaded and the author is prompted to provide the location of a CIF.
As the CIF is imported into the application, the data items that
will be used in the publication are extracted and converted into a
rich-text format (RTF) representation. For extended text fields, this
RTF content may be edited directly in the word-processing envi-
ronment; this makes it easy for authors to compose and edit con-
tinuous text in a familiar way. Numeric and brief textual data items
from the CIF are processed and presented in read-only fields in the
manner in which they will appear in the journal, often as entries in
a table or as a list of brief experimental details. These fields may
not be edited within the RTF representation; if it is necessary to
change these, the author must modify the data value in the CIF
itself. To assist the author, the contents of the CIF are opened in
a text-editor window alongside the formatted representation. The
CIF and RTF representations are linked; if the author selects text
in the RTF window, the corresponding CIF data item is highlighted
within the text-editor window (Fig. 5.3.3.13).

The advantages to the author of editing in RTF format are that
existing text may be cut and pasted from other applications, and
formatting features, such as subscript or superscript text, Greek let-
ters and other special symbols, may be entered through the word-
processor’s menu-driven interface, rather than by use of the rather
unmemorable ASCII codings used in CIF.

The major disadvantage is the need to recognize that two ver-
sions of the file, both editable, are accessible at the same time; and
care must therefore be taken to ensure that conflicting changes are
not made, and that the author is aware of which version is currently
the master. The function ‘Update CIF using RTF’ (in the toolbar of
the CIF editing window) will reimport into the CIF all the editable
content from the RTF window, replacing any existing data items.

Fig. 5.3.3.13. The dual RTF/CIF editing windows in the printCIF for Word
application. In this example, the author has selected the word ‘Monoclinic’
in the read-only table of crystal data; the corresponding CIF data item
_symmetry_cell_setting is highlighted in the CIF window, where it may
be edited.

The complementary function, ‘Build preprint’, creates a fresh copy
of the preprint representation of the document in RTF format.

A number of options are available to modify the preprint that is
generated (for example, by printing a complete list of the geometry
included in the CIF rather than just the items flagged for publica-
tion; or listing the atomic coordinate data). The general style is that
of Acta Crystallographica Section C and Section E; nevertheless,
the application may be useful to users who do not intend to submit
to these journals but who wish to produce an attractive representa-
tion of the content of their CIFs.

Utilities are provided to create tables in the RTF environment
suitable for embedding in the CIF, to browse the contents of the
CIF core dictionary and to validate the syntax of the CIF. The
application is not dictionary-driven, however, and does not carry
out detailed consistency checks. It is therefore best considered as
an aid to publication, to be used alongside data-centric editors and
validation tools such as enCIFer.

A particularly useful self-documenting feature of printCIF for
Word is that the User Guide is automatically opened when the
application is started, before a CIF is loaded.

5.3.4. Data-name validation

In a CIF, a data name (a character token beginning with an under-
score character, _) is an essential handle on an item of data within
a data block. Equipped only with knowledge of the data names
appearing in a CIF, a user may extract, reorder or query the infor-
mation content of the file. Such manipulations require no prior
knowledge of the semantic content of the data. However, for most
practical applications it is important to know the meaning attached
to data names, and CIF dictionaries provide the mechanism for
associating a data name with its intended meaning for an applica-
tion. It is therefore valuable to be able to check whether data names
in a CIF match those defined in a dictionary file. It is also valuable
to check the consistency of the data names listed in the dictio-
nary file itself; since this will be used by external applications to
validate data names, it is essential that it be internally consistent.

507

5. APPLICATIONS

Hence there is a real need for a utility to validate data names –
effectively a CIF spelling checker.

5.3.4.1. CYCLOPS

The program CYCLOPS (Hall, 1993; Bernstein & Hall, 1998)
was written specifically to address the problem of validating CIF
data names. Its use extends beyond simply identifying data names
in a CIF data file and checking that they are defined in a dictio-
nary. Any ASCII file may be input, allowing for the checking of
CIF data names in any text documents or program source.

The program was originally written in Fortran as an aid to ensur-
ing that the original core CIF dictionary was free from data-name
errors; subsequently it was extended to be able to read multiple
dictionaries in DDL1 and DDL2 formats, and to resolve data-
name aliases across multiple dictionaries. The extended version
was written with the library routines of the CIFtbx toolkit (Hall &
Bernstein, 1996) described in Chapter 5.4 and is distributed as an
example application with CIFtbx. The description below refers to
this extended version, also known as CYCLOPS2.

5.3.4.1.1. Operation

The program determines the dictionary (or list of dictionaries)
against which to validate the input text file (see below for the
method of passing such information to the program). It opens each
dictionary in turn and stores all data names defined in the dictio-
naries. Where the same name is defined in multiple dictionaries,
the behaviour is determined by a command-line switch.

The text file is then input and parsed for candidate data names.
Because the program is designed to check potential data names
embedded in ordinary text files, it is not sufficient to apply the CIF
parsing rule of a white-space-delimited character string beginning
with an underscore character. Instead, character strings are sought
that begin with an underscore optionally preceded by white space
or one of the characters ,.([{</\|’":* and followed by white
space, one of the characters ,.)]}>/\|’"-=?!;: or by the end of
a line.

For each candidate data name found in this way, matching data
names in the stored list are identified in one of three ways:

(i) If the data name is not preceded by the asterisk character *
and it does not end with the underscore character _, then search for
an identical match.

(ii) If the data name ends with the underscore character _,
then search for a match in the dictionary where the leading char-
acters in the dictionary name are the same as all the charac-
ters in the data name found in the text. For example, the text
_atom_site.label_ would match the mmCIF dictionary entry
_atom_site.label_alt_id.

(iii) If the data name is preceded by the asterisk character *,
then search for a match in the dictionary where the trailing char-
acters in the dictionary name are the same as all the characters
in the data name found in the text. The first match found in the
dictionary is accepted. For example, the text *_alt_id would
match _atom_site.label_alt_id, or, if that name had not been
in the dictionary, _struct_conn.ptnr1_label_alt_id. If one of
the searches succeeds, add the line number of the data name to
a list attached to the dictionary name. Up to 19 line numbers are
retained for each dictionary name (the first ten matches and the last
nine).

If no match is found, the unmatched data name is added to the
list of unmatched names, along with the appropriate line number.
If a data name has been misspelled it will be caught at this step.

When the text file has been processed, a validation report file
is output containing the alphabetically sorted list of unmatched
names and line numbers, followed by the sorted list of names from
all dictionaries that are used within the text. If requested, this is fol-
lowed by the sorted list of names from all dictionaries that are not
used within the text in the file. If a data name has an alias defined
in the dictionaries, a warning about the existence of the alias is
given. If more than one dictionary has been used, the source dic-
tionary is identified for each data name. An example of the output
from CYCLOPS is shown in Fig. 5.3.4.1.

5.3.4.1.2. Invocation of the program

CYCLOPS is generally invoked from a command line that spec-
ifies the input and output file names and the dictionary files against
which to validate the input. However, because the program is
portable across a wide range of operating systems, there is sub-
stantial flexibility in the way in which it may be invoked. Under a
Unix-like operating system, the program may typically be called
with a command such as

cyclops -i infile -o outfile -d dictfile

where infile is the name of the input file for validation, outfile is
the file to which the detailed output of the program is written and
dictfile is a dictionary file.

A more complete set of options available in a Unix-like operat-
ing environment is

cyclops [-i infile] [-o outfile] [-d dictfile] [-p priority]
[-f cmndfile] [-c catck] [-v verbose] [-s short]

where the options are as follows:
-i specifies the name of the input file, infile.
-o specifies the name of the output file, outfile.
-d specifies the name of the dictionary file, dictfile. For com-

patibility with the original version of the software, the dictionary
file may be either a CIF dictionary or a list of file names. That is,
it may contain dictionary definitions in DDL format or (if the file
begins with the characters #DICT) it may contain a list of dictio-
nary file names to be entered. As implied by this last statement,
multiple dictionaries may be specified to the program.

-p specifies the priority that should be assigned if multiple defi-
nitions for the same data name are encountered when multiple dic-
tionaries are accessed. The permitted values are: first (the default),
in which the first of duplicate definitions to be loaded takes pri-
ority; final, in which the last takes priority; and nodup, in which
an instance of a duplicate definition should be treated as a fatal
error.

-f specifies the name of a command file cmndfile that contains
additional directives to the program.

-c is a flag indicating whether an error message should be raised
if a data name has been assigned a category different from the
leading portion of the data name itself. The Boolean variable catck
may take the values ‘t’, ‘1’ or ‘y’ for true, ‘f’, ‘0’ or ‘n’ for
false.

-v is a flag indicating whether a verbose listing of unreferenced
data names should be generated. The Boolean variable verbose
may take the same values for true or false as above.

-s is a flag indicating whether the output should be short (i.e.
restricted to items not in dictionaries). The Boolean variable short
takes the same values as above.

For the flags expecting Boolean values, the default is ‘f’ (false).
If no input or output file names are specified, the program will

read from the standard input channel or write to standard output,

508

5.3. SYNTACTIC UTILITIES FOR CIF

CYCLOPS Check List

Dictionary data names = 2244
New data names in text = 4
[1] Dictionary cif_core.dic 2.0.1 data names = 624
[2] Dictionary cif_mm.dic 0.9.0 data names = 1620

Data names NOT in Dictionary Line Numbers

_blat1 9 11 94 96
181 183 290 296

_blat2 13 15 98 100
185 187 287 293

_dummy_test 5 7 90 92
177 179 201

_rubbish_here. 431

[1] Dictionary cif_core_2.0.1.dic
[2] Dictionary cif_mm.dic

Line Numbers

[2] _atom_site.calc_attached_atom 413
[1] = _atom_site_calc_attached_atom 412
[2] _atom_site.calc_flag 410
[1] = _atom_site_calc_flag 409
[2] _atom_site.fract_x 38 44 50 390
[1] = _atom_site_fract_x 389
[2] _atom_site.fract_y 39 45 51 394
[1] = _atom_site_fract_y 393
[2] _atom_site.fract_z 40 46 52 398
[1] = _atom_site_fract_z 397
[2] _atom_site.id 37 43 49 386
[1] = _atom_site_label 385
[2] _atom_site.thermal_displace_type 406
[1] = _atom_site_thermal_displace_type 405
[2] _atom_site.type_symbol 416 420 424 428

434 438 442 450
[1] = _atom_site_type_symbol 415 419 423 427

433 437 441 449

[later in the validation output file, showing the transition to unrefer-
enced data names . . .]

[1] _symmetry_cell_setting 319
[2] = _symmetry.cell_setting 320
[1] _symmetry_space_group_name_H-M 323
[2] = _symmetry.space_group_name_H-M 324
[1] _symmetry_space_group_name_Hall 327 445
[2] = _symmetry.space_group_name_Hall 328 446

[1] Dictionary cif_core_2.0.1.dic
[2] Dictionary cif_mm.dic

Names Not Referenced

[2] _atom_site.aniso_B[1][1]
[2] _atom_site.aniso_B[1][1]_esd
[2] _atom_site.aniso_B[1][2]

[. . . portion of output omitted . . .]

[2] _atom_site.aniso_U[3][3]_esd
[2] _atom_site.attached_hydrogens
[1] = _atom_site_attached_hydrogens
[2] _atom_site.auth_asym_id
[2] _atom_site.auth_atom_id
[2] _atom_site.auth_comp_id
[2] _atom_site.auth_seq_id
[2] _atom_site.B_equiv_geom_mean
[1] = _atom_site_B_equiv_geom_mean
[2] _atom_site.B_equiv_geom_mean_esd
[2] _atom_site.B_iso_or_equiv
[1] = _atom_site_B_iso_or_equiv
[2] _atom_site.B_iso_or_equiv_esd

[. . . remainder of output omitted . . .]

Fig. 5.3.4.1. Sample output from CYCLOPS. The output has been edited and refor-
matted slightly to fit into the present column width.

respectively. The special character hyphen (‘-’) may also be sup-
plied as an argument to ‘-i’ or ‘-o’ to indicate standard input or
standard output.

Finally, if the operating system supports the passing of envi-
ronment variables to a program, the names of the input file,
output file and dictionary file may be passed through the
values of $CYCLOPS_INPUT_TEXT, $CYCLOPS_VALIDATION_OUT or
$CYCLOPS_CHECK_DICTIONARY, respectively.

5.3.5. File transformation software

This section describes a number of applications that transform an
input CIF either to another CIF that contains a subset of the origi-
nal contents or to other formats suitable for use with general pro-
cessing tools. (Conversion to other crystallographic data formats
is not discussed here.)

5.3.5.1. QUASAR: a data extractor

The oldest CIF manipulation program is QUASAR (Hall & Siev-
ers, 1993), which was described as the prototype CIF application in
the original standard specification paper (Hall et al., 1991). Much
of the functionality of QUASAR has now been included in the
cif 2cif program (Section 5.3.5.2). However, it remains useful as
an application in its own right, and so is briefly described here.

5.3.5.1.1. Purpose

The program was designed to read a request list of data names,
to locate the associated data in an input CIF and to output the data
in the order of the request list. The output retains local confor-
mance to CIF syntax rules, but the output file may not be strictly
CIF conformant. For example, the same data can be requested mul-
tiple times and will be reproduced as often as requested in the out-
put stream, a feature forbidden within a legal CIF.

5.3.5.1.2. Mode of operation

Written as a pure Fortran77 application, QUASAR requires three
data streams: a file containing the request list, an input CIF and an
output file. In an operating system such as Unix, it is convenient
to attach the request list to the standard input channel; the first two
lines of the input stream then take the form star_arc_infile and
star_out_outfile, where infile and outfile are the file names of
the input and output files, respectively.

The assignment of an output file may be replaced by a line con-
taining star_log. When this is done, the program will test the syn-
tactic validity of the input CIF and write any error messages to the
standard output channel. In this mode the program may be used as
a syntactic validator, although it is more tolerant of certain syntac-
tic errors than vcif (Section 5.3.2.1).

5.3.5.1.3. The request list

Fig. 5.3.5.1 is an example request list, intended to highlight
some of the special features of the way the program operates. Fig.
5.3.5.2 shows an example CIF against which this request list will
be tested; Fig. 5.3.5.3 shows the output. Both figures have been
modified slightly to fit on the printed page; they are derived from
the sample files distributed with the program.

The request list begins with directives specifying the input and
output file names (qtest.cif and qtest.out, respectively). The file
may contain comments prefaced by a hash character #; this is
a useful feature for annotating a request list. Another use for
such comments is seen in the standard request list distributed
to authors for papers published in Acta Crystallographica. Here,
data names that are not normally published are hidden within the
request list as comments and may be activated if they occur in a
publ_manuscript_incl_extra_item loop within a CIF (see Sec-
tion 5.7.2.3).

509

5. APPLICATIONS

star_arc_qtest.cif
star_out_qtest.out

data_ #<< wild-card block name - accepts first

request all fractional coord items
_atom_site_fract_
_atom_site_label

capitals to test case insensitivity
_atom_site_aniso_LABEL

request something that is not in the CIF
_dummy
_atom_site_aniso_U_11

data_P6122
_ #<< this requests all data in this block

Fig. 5.3.5.1. An example request list for QUASAR.

data_P6122

loop_
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number_in_cell

capitals to test case insensitivity
_atom_type_scat_dispersion_REAL
_atom_type_scat_dispersion_imag
_atom_type_scat_source

S 0 6 .319 .557
Int_Tab_Vol_III_p202_Tab._3.3.1a

O 0 6 .047 .032
Cromer,D.T._&_Mann,J.B._1968_AC_A24,321.

C 0 20 .017 .009
Cromer,D.T._&_Mann,J.B._1968_AC_A24,321.

RU 0 1 -.105 3.296
Cromer,D.T._&_Mann,J.B._1968_AC_A24,321.

loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_thermal_displace_type
_atom_site_calc_flag
_atom_site_calc_attached_atom
_atom_site_type_symbol

s .20200 .79800 .91667 .030(3) Uij ? ? s
o .49800 .49800 .66667 .02520 Uiso ? ? o
c1 .48800 .09600 .03800 .03170 Uiso ? ? c

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
_atom_site_aniso_U_13
_atom_site_aniso_U_23
_atom_site_aniso_type_symbol

s .035(4) .025(3) .025(3) .013(1) .000 .000 s

Fig. 5.3.5.2. Example CIF for demonstrating the use of QUASAR.

The request list must specify the data block from which the
requested data are to be extracted. Multiple data blocks may be
requested in the same file. An entry ‘data_’ operates as a wild

data_P6122

loop_
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_label

.20200 .79800 .91667 s

.49800 .49800 .66667 o

.48800 .09600 .03800 c1

loop_
_atom_site_aniso_label
_dummy # requested item not present
_atom_site_aniso_U_11

s ? .035(4)

-----end-of-data-block-----

data_P6122

loop_
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number_in_cell
_atom_type_scat_dispersion_REAL
_atom_type_scat_dispersion_imag
_atom_type_scat_source

S 0 6 .319 .557
Int_Tab_Vol_III_p202_Tab._3.3.1a

O 0 6 .047 .032
Cromer,D.T._&_Mann,J.B._1968_AC_A24,321.

C 0 20 .017 .009
Cromer,D.T._&_Mann,J.B._1968_AC_A24,321.

RU 0 1 -.105 3.296
Cromer,D.T._&_Mann,J.B._1968_AC_A24,321.

loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_thermal_displace_type
_atom_site_calc_flag
_atom_site_calc_attached_atom
_atom_site_type_symbol

s .20200 .79800 .91667 .030(3) Uij ? ? s
o .49800 .49800 .66667 .02520 Uiso ? ? o
c1 .48800 .09600 .03800 .03170 Uiso ? ? c

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
_atom_site_aniso_U_13
_atom_site_aniso_U_23
_atom_site_aniso_type_symbol

s .035(4) .025(3) .025(3) .013(1) .000 .000 s

-----end-of-data-block-----

Fig. 5.3.5.3. Result of running QUASAR with the example request list of Fig. 5.3.5.1
on the CIF listed in Fig. 5.3.5.2.

card and indicates that requests should be served from the next
data block encountered. In the example above, the first group of
requests will be met from the first data block in the CIF; the
second set from the data block named ‘P6122’ (if present).

510

5.3. SYNTACTIC UTILITIES FOR CIF

5.3.5.1.4. Output from QUASAR

The body of the request list is a series of data names. Where a
data name appears in the CIF, it will be extracted with its associ-
ated data value or values. The user need not have prior knowledge
of whether a data item occurs in a looped list or not: QUASAR will
automatically retrieve the matching values and construct a loop
header if necessary. However, because the requests are served in
the exact order in which they occur in the file, data items in the
same list in the input CIF may be extracted into different lists upon
output. Although this breaks the semantic association between
items grouped in the same list (especially for CIFs described by
the DDL2 relational scheme), it is a syntactically valid construc-
tion and may be a valuable feature for some processes.

5.3.5.1.4.1. Treatment of missing data

When a requested data item is absent from the CIF, QUASAR
will nevertheless emit a data name with a corresponding value of
‘?’, the conventional CIF value of null type for ‘unknown quan-
tity’. A CIF comment is also generated by QUASAR to indicate
that the entry was missing from the input CIF. If the missing data
name is found between data names that have multiple values and
that occur in the same looped list, it is assumed that the missing
data name should be associated with the same looped list, and
it will be emitted in the loop header; the integrity of the list is
then satisfied by emitting a column of unknown values. Note how
this behaviour differs from that of the generic STAR File extrac-
tion utility Star Base (Spadaccini & Hall, 1994), which silently
ignores missing data items. However, it is a useful behaviour for
applications that depend on finding a specific data item in their
processing stream, even where its value is unknown.

5.3.5.1.4.2. Matching data names

As with the specification of data-block names, the data names
in the request list may have a trailing underscore. Where this
is the case, QUASAR will retrieve all data items where the data
name starts with the specified string. For example, a request
for ‘_atom_site_’ will extract all data names starting with
‘_atom_site_’. The special case of an isolated underscore char-
acter ‘_’ matches all data names present in the current data block.

5.3.5.1.4.3. Case sensitivity

The example demonstrates the way in which the application
handles the case insensitivity of a requested data item. Data names
are converted internally to a lower-case representation, both from
the request list and the input CIF. Matches are therefore deter-
mined in a case-insensitive manner. However, if a data name is
present in the CIF, its original case is retained on output. This per-
mits the computationally irrelevant but cosmetically useful reten-
tion of capitalization as used in canonical CIF dictionary defini-
tions. Where the requested data name is absent, the output is all
lower-case.

5.3.5.2. cif 2cif

cif 2cif (Bernstein, 1998) is a program built with the CIFtbx
toolkit (Chapter 5.4) to copy a CIF while checking data names
against dictionaries, optionally reformatting numbers to maintain
standard uncertainties within a specified range. The output CIF
may contain a subset of the data in the original CIF according to a
request list, in the manner of QUASAR (Hall & Sievers, 1993).

The program was built as a sample application using CIFtbx
routines and grew out of requirements from several sources.

5.3.5.2.1. Operation

5.3.5.2.1.1. Copying

In its simplest application, the program copies a CIF from the
standard input channel to standard output. The copy is not verba-
tim (standard utilities of the computer operating system should be
used for that purpose), but the output CIF differs from the input
only in the following respects: some comments are deleted; lines
in the input longer than 80 characters are wrapped to 80 characters
or less; white space between tokens may be altered, especially in
an attempt to align entries in looped lists in a cosmetically pleasing
manner. While none of these changes should affect robust CIF-
parsing applications, they are nevertheless useful in imposing a
uniform style of presentation for browsing in a text editor or other
human-readable framework.

5.3.5.2.1.2. Constraining standard uncertainties to specified
ranges

Some journals require that standard uncertainties in experimen-
tal values should be quoted within a specified range. Typically
the standard uncertainty (s.u.) should be quoted as an integer in
parentheses, modifying the last place or two of decimals in the
experimental data, and with a value between 2 and 19. cif 2cif
permits s.u. values in the ranges 1–9, 2–19 or 3–29, selectable
by a command-line switch. The effect of applying the ‘rule of
19’ would be to change a value of 1.458(1) in the input CIF to
1.4580(10) in the output.

5.3.5.2.1.3. Dictionary validation

cif 2cif will open one or more CIF dictionary files as it copies
the input CIF and identify certain classes of error against the dic-
tionary definitions. The conditions that will raise an error are an
unrecognized data name or a wrong data type. The program will
also optionally indicate a warning if a data name has been assigned
a category different from the leading portion of the data name –
this may indicate an inconsistency within the dictionary itself.

5.3.5.2.1.4. Serving a request list

cif 2cif will extract a subset of the data items contained in a
CIF as specified by a request list, in the manner of QUASAR. The
handling of data names specified in the request list is as described
in Section 5.3.5.1.3 above, with the following additional feature.
The special string data_which_contains: will extract the spec-
ified data items from the first data block in which at least one
occurs; the block code need not be known in advance.

Some care must be exercised in attempting to extract data from
data blocks by context without prior knowledge of the file contents.
Consider the following simple example file:

data_A
loop_ _A1

_A2
a1 a2 aa1 aa2

data_B
loop_ _A1

_B1
a b aa bb

The loop containing _A1 and _B1 cannot be extracted with a
request list of the form

data_which_contains:
_A1
_B1

511

5. APPLICATIONS

because _A1 occurs in the first data block encountered; the output
from cif 2cif in this example will be

data_A
loop_ _A1

a1 aa1
---end-of-data-block---

The behaviour of the program differs from QUASAR in two
other small ways. When the request list forces the output data
stream to contain the same data-block header more than once, an
error message is posted to the standard error channel and the data-
block headers in the output stream are annotated with a comment
of the form ‘#<---- duplicate data block’. In this case the out-
put file does not conform to the CIF syntax rules.

When a data name is requested but no matching data item
appears in the output file, cif 2cif writes an error message to the
standard error channel. However, unlike QUASAR, which inserts
the requested data name in the output stream with an associated
value of ‘?’ (for unknown), cif 2cif produces no output for the
requested data item.

5.3.5.2.1.5. Other features

Some additional features are of use in special circumstances.
The user may preserve the layout of the contents of looped lists

exactly as in the input file, or may ask the program to adjust the
layout to a more visually pleasing tabular form.

The user may enable recognition of data-name aliases in the
dictionaries used for validation. When the relevant command-line
argument is set to true, user-supplied data names will be trans-
formed to the canonical forms in the validating dictionary. This
would permit, for example, a small-molecule CIF using the core
dictionary definitions to be converted to mmCIF format.

The user may prefix each line of output with an identical char-
acter string. A typical reason for so doing would be to include a
fragment of CIF listing within the body of an email message or
some other document. Such an output would not conform to the
syntax rules for CIF.

5.3.5.2.2. Invocation of the program

cif 2cif is another application of the CIFtbx library by the same
author, and so has a similar user interface to that of CYCLOPS
(Section 5.3.4.1.2). Under a Unix-like operating system, the pro-
gram is typically called with a command such as

cif2cif -i infile -o outfile [-q reqfile]

where infile is the name of the input file, outfile is the output file
and reqfile is an optional file containing a request list for a subset
of the original contents.

A more complete set of options available in a Unix-like operat-
ing environment is

cif2cif [-i infile] [-o outfile] [-d dictfile] [-q reqfile]
[-f cmndfile] [-c catck] [-a alias] [-t tab] [-e sulim]
[-p prefix]

where the options are as follows:
-i specifies the name of the input file, infile.
-o specifies the name of the output file, outfile.
-d specifies the name of a dictionary file, dictfile, against which

the existence, type and category of data names are checked. The
dictionary file may be either a CIF dictionary or a list of file names.
That is, it may contain dictionary definitions in DDL format or
(if the file begins with the characters #DICT) it may contain a list
of dictionary file names to be entered. Thus, multiple dictionaries
may be specified to the program.

-q specifies the name of the request file, reqfile, containing
a list of data names (with associated data-block directives) that
should be extracted as a subset of the contents of the original
file.

-f specifies the name of a command file cmndfile that contains
additional directives to the program.

-c is a flag indicating whether an error message should be raised
if a data name has been assigned a category different from the
leading portion of the data name itself. The Boolean variable catck
may take the values ‘t’, ‘1’ or ‘y’ for true, ‘f’, ‘0’ or ‘n’ for
false.

-a is a flag indicating whether data-name aliases in the validat-
ing dictionary should be used to replace user-supplied names by
their canonical forms. The Boolean variable alias may take the
same values for true or false as above.

-t is a flag indicating whether the output should be reformatted
with tabs to produce a regular table layout within looped lists. The
Boolean variable tab takes the same values as above. If true, text
is reformatted; if false, the original formatting is retained.

For the flags expecting Boolean values, the default is ‘f’ (false).
-e specifies the precision to retain in rounding standard uncer-

tainty values. The permitted integer values are 9, 19 (the default)
and 29.

-p takes a string value which is prefixed to every line of output.
Every occurrence of the underscore character ‘_’ in the prefix is
changed to a space on output.

If no input or output file names are specified, the program will
read from the standard input channel or write to standard output,
respectively. The special character hyphen (‘-’) may also be sup-
plied as an argument in place of a file name to indicate standard
input or standard output as appropriate.

Finally, if the operating system supports the passing of
environment variables to a program, the name of the input
file may be passed as the value of $cif2cif_INPUT_CIF,
and likewise the output file, $cif2cif_OUTPUT_CIF, dictionary
file, $cif2cif_CHECK_DICTIONARY, and request file, $cif2cif_

REQUEST_LIST, may be specified.

5.3.5.3. ciftex: translating to a typesetting language

The program ciftex (McMahon, 1993) was developed to create
files for typesetting the journal Acta Crystallographica using the
text-formatting language TEX (Knuth, 1986). Details of its use in
the journal production process are given in Chapter 5.7. It is dis-
cussed here as an example of translating a CIF to some output for-
mat where data values are annotated with different text depending
on their accompanying data names.

5.3.5.3.1. Basic operation of ciftex

The program is designed to act as a filter, typically in a Unix-
style environment, reading a CIF on the standard input channel
and outputting a modified data stream to standard output. The out-
put is a file of TEX code that is processed by the TEX program
to produce a device-independent file describing the content of a
formatted typeset document. Further post-processing allows the
formatted document to be viewed on the screen or printed.

Each input token (number, character or text string; data name;
loop_ or data_ keywords) is transformed as it is identified;
there is no lookahead and minimal retention of context. The
data stream is treated purely syntactically; no transformations are
applied on the basis of the supposed meaning of any of the file
contents.

512

5.3. SYNTACTIC UTILITIES FOR CIF

_cell_formula_units_Z 2
_cell_length_a 8.79(2)
_refine_ls_extinction_coef .347e4(5)
_chemical_name_common ’copper sulphate’

Fig. 5.3.5.4. Sample CIF data input to ciftex.

\cellz{2}
\nobreak\cella{8.79 (2)}
\extcoeffLarson{0.347 (5) \times $10ˆ{4}$}
\chemcom{copper sulfate}

Fig. 5.3.5.5. Output from ciftex run on the data of Fig. 5.3.5.4.

5.3.5.3.1.1. Non-looped data

For portions of the CIF that are not contained in looped lists,
the transformations are trivial. A (data name, data value) pair is
transformed to a TEX macro and its argument. The macro name is
determined from an external ‘map’ file which the program reads at
run time; this file associates CIF data names and the corresponding
TEX macros through a simple lookup table.

A CIF data value is in most cases passed as the argument to the
corresponding TEX macro with few modifications. If the data value
is a character string beginning with an integer, full point, hyphen or
plus character, it is assumed to be of type ‘numb’. A space is intro-
duced ahead of an embedded open parenthesis (to separate a stan-
dard uncertainty from its parent value). A leading zero is printed
before any bare decimal point. An embedded E is taken to indicate
exponential notation and the format of the number is accordingly
modified.

If the input data value is of type ‘char’ (i.e. is a single token
beginning with characters other than those recognized as the lead-
ing characters for numerical data; or contains multiple tokens
delimited by quote marks or semicolons), the program will search
the map file for key values exactly matching each token, and if
found will substitute the token by its replacement word or text.
If no replacement is specified in the map file, the token is passed
unchanged to the standard output channel. This facility was found
to be useful in making global substitutions of individual words dur-
ing file processing, but must be used with care since the substitu-
tions are unconditional, without any reference to context.

Some small examples of typical non-looped data items are
shown in Fig. 5.3.5.4 and the corresponding ciftex translation
based on a map file used for typesetting Acta Crystallographica
Section C is shown in Fig. 5.3.5.5.

Note the transformations of the numerical arguments and the
translation of ‘sulphate’ to ‘sulfate’.

5.3.5.3.1.2. Looped data

If the input token is a loop_ keyword, the program enters a dif-
ferent mode of operation. Looped data may be represented in print
either as repetitive lists or in tabular format. There is no indication
in a CIF dictionary of the appropriate representation (nor should
there be, for what is essentially a matter of presentation) and the
choice is made based on a flag associated with each data name in
the map file. For non-tabular lists, the structure

loop_
_dataname_1
_dataname_2

value_1 value_2
value_3 value_4

\settabs 5 \columns
\+\relax & x & y & z &$U_{\rm eq}$&\cr
\+Re &0.222 (1) &0.003 (1) &0.146 (1) &0.042 (1) &\cr
\+Co &0.234 (1) &0.139 (1) &0.299 (1) &0.046 (1) &\cr
\+P1 &0.358 (1) &0.222 (1) &0.197 (1) &0.044 (1) &\cr
\+P2 &0.106 (2) &0.051 (1) &0.289 (1) &0.046 (1) &\cr
\+C1 &0.308 (6) &0.029 (6) &0.034 (4) &0.057 (4) &\cr
\+O1 &0.356 (5) &0.044 (5) &0.030 (3) &0.079 (3) &\cr
\+C2 &0.066 (6) &0.039 (6) &0.111 (4) &0.056 (4) &\cr

Fig. 5.3.5.6. TEX markup for typesetting a table of atomic coordinates.

is translated to a sequence of TEX codes of the form

\macro_one(value_1)
\macro_two(value_2)
\macro_one(value_3)
\macro_two(value_4)

In the case of tabulated data, the loop_ header is translated into
a set of table headings and typographic codes are introduced to lay
out in columnar format the values in the body of the list. The num-
ber of different data names in the loop header is counted and the
data values are identified by their position in the loop modulo the
total number of data names in the header (in effect, by their ‘phase’
in the loop). In the simplest case, a TEX command is emitted that
builds a table with n columns, where n is the number of different
data names. Then the data values are counted as they are processed.
After every nth data value, a TEX code is emitted indicating ‘end
of table row’ and a further code is emitted before the next value (if
there is one) that means ‘beginning of new table row’. In all other
cases, a code is emitted signifying ‘move to next column’.

Fig. 5.3.5.6 is a simplified extract from a table of atomic coor-
dinates derived from the _atom_site_ loop in a CIF.

5.3.5.3.1.3. The ancillary map file

The translation between a CIF data name and its replacement
text in the TEX output file is defined in the external map file.
The format of the translation is very simple, as illustrated in Fig.
5.3.5.7.

Each line starts with a CIF data name, which is terminated by a
space character. The next character is either ‘T’ or ‘N’ to indicate
whether the output should be tabulated or not. The next character is
an arbitrary character from the ASCII character set, and is chosen
to collect together data that will appear in the same logical sec-
tion of the output file. This locator character may be associated,
in another ancillary file described below, with additional text for
output. The remainder of the line is the replacement text.

In the example supplied, the cell-length parameters map to the
TEX macros \cella, \cellb and \cellc (each preceded by a stan-
dard TEX macro forbidding a page break immediately before the
contents are printed). The details of the publication authors are
described by a set of TEX macros that will occur in two differ-
ent locations in the output file (the authors’ names and addresses
may be looped together in the location labelled by the character a;
any explanatory footnotes and email addresses will be printed else-
where in the paper, at the location labelled X). The anisotropic dis-
placement parameters Ui j will be printed in a table and the replace-
ment text consists of the TEX codes that will be printed at the head
of each column in the table.

The initial text on the line need not be a CIF data name; it may
be any other single word. In this case, every occurrence of that
word in the input CIF will be replaced by the replacement text.

513

5. APPLICATIONS

_cell_length_a Ng\nobreak\cella
_cell_length_b Ng\nobreak\cellb
_cell_length_c Ng\nobreak\cellc

_publ_author_name Na\author
_publ_author_address Na\address
_publ_author_footnote NX\aufootnote
_publ_contact_author_email NX\email

_atom_site_aniso_label TU\relax
_atom_site_aniso_U_11 TU{\hfill $Uˆ{11}$ \hfill}
_atom_site_aniso_U_12 TU{\hfill $Uˆ{12}$ \hfill}
_atom_site_aniso_U_13 TU{\hfill $Uˆ{13}$ \hfill}
_atom_site_aniso_U_22 TU{\hfill $Uˆ{22}$ \hfill}
_atom_site_aniso_U_23 TU{\hfill $Uˆ{23}$ \hfill}
_atom_site_aniso_U_33 TU{\hfill $Uˆ{33}$ \hfill}

Fig. 5.3.5.7. Example map file for use with ciftex.

If the initial character of the line is a hash mark #, the line is
treated as a comment and discarded.

5.3.5.3.1.4. The ancillary format file

Because a printed paper may be more verbose than its parent
CIF data file, it is necessary to add text to the output from ciftex to
represent section headings, line spaces or other formatting instruc-
tions. The program reads an ancillary file, known as the format file,
for such additional text.

Each line in the format file begins with a hash mark #, a sin-
gle ASCII character and a colon. The second character is chosen
to match the corresponding locator character associated with data
names in the map file. The rest of the line is text to be output. When
the locator character associated with the data name currently being
processed differs from the previous one, the output text from all
lines in the format file with the new locator character are output.

The special strings #[: and #]: indicate text to be emitted at the
beginning and end of the output stream, respectively.

Fig. 5.3.5.8 is an example of a simplified format file. The first
line is printed at the start of the output TEX file; the second line
at the end. The next line will be printed on the first occurrence
of a data name flagged with the locator code a in the map file. In
this example, that will be the name or address of an author of the
paper; some typographic directives are emitted immediately before
the authors’ names and addresses, including the introduction of
a blank line (‘vertical skip’, or ‘vskip’) of height 10 typographic
points.

The lines beginning #g: are emitted immediately before the first
data name in the group that is associated with locator code g. In this
example, the effect is to output a heading and subheading before
printing the cell-length parameters and to switch to double-column
format. The line containing only the characters #g: provides for the
introduction of a blank line into the TEX file, with the sole purpose
of making the file more readable by human editors.

The lines beginning #U: are emitted at the beginning of the table
of anisotropic U values.

The mechanism looks complicated at first sight, but addresses
the need to generate headings at standard locations in a printed
paper when the exact content of the paper is not known in advance.

The different format for directives in the map and format files
means that the same file can be used for both purposes, if required.
In practice it is often easier to maintain different files: the same
mapping between CIF data names and TEX macros might be com-
mon to different journals, while each journal uses its own format
file.

#[:\newif\ifproof \prooftrue
#]:\iftwocol\vfill\enddoublecolumns\fi
#a:\pretolerance1000\parskip0pt\tolerance5000
#a:\vskip10pt
#g:
#g:%%%
#g:\iftwocol\enddoublecolumns\twocolfalse\fi
#g:\tenbf Experimental
#g:\noindent\ninebf Compound \datablock\vskip2pt
#g:\noindent\nineit Crystal data\par
#g:\vskip2pt\begindoublecolumns\twocoltrue\defaultfont
#U:%%%%%%%%%%% Table of anisotropic U’s %%%%%%
#U:\iftwocol\enddoublecolumns\twocolfalse\fi
#U:\rm Table \tableno. \it Anisotropic displacement
#U:parameters \rm (\AA$ˆ2$) for \datablock
#U:\vskip 6pt

Fig. 5.3.5.8. Example format file for ciftex.

5.3.5.3.2. Invocation of the program

The program reads a CIF on the standard input channel and out-
puts TEX code on standard output. There is no provision to specify
file names. It is therefore invoked within a Unix-style operating
system by a command such as

ciftex < infile > outfile

where infile and outfile are the input and output files respectively;
or it may be called as part of a pipeline of procedures:

program 1 < infile | ciftex | program 2 . . .

A number of command-line options may be supplied to modify
the operation of the program. Other than the specification of the
map and format files, they are largely relevant to differing house
styles for IUCr journals.

The options -map mapfile and -format formatfile specify the
names of the ancillary map and format files. If not specified,
they are sought in default locations on the user’s file system (dif-
ferent values may be defined when the program is compiled)
or as specified in the environment variables $CIFTEX_MAP and
$CIFTEX_FORMAT, respectively.

The options -H and -N specify, respectively, whether or not
hydrogen atoms in coordinate tables should be printed. The
hydrogen-atom lines in the table are in fact always emitted on stan-
dard output, but in the case of the -N option are prefixed by a %

(TEX comment) character and so ignored by TEX.
Options -c and -F specify the printing of centred decimal points

or commas for decimal points, respectively. Finally, the option -d
modifies certain assumptions that ciftex makes when typesetting
CIF dictionaries. The details are of interest only to a specialist.

5.3.5.3.3. Some general comments

Although ciftex is available for public use and redistribution
within the academic community, it is clearly of most interest to
users who need to generate typeset representations of the contents
of CIFs. Nevertheless, some elements of its design are relevant to
other applications that perform on-the-fly file transformations on a
strictly syntactic basis.

First, the functionality is very simple, essentially tokenizing the
input data stream and exchanging tokens for replacement text as
directed. An immediate consequence of this is the need for addi-
tional utilities to manipulate the input file if, for example, the data
need to be presented in a particular order. In the journals produc-
tion process, QUASAR is used to reorder an input file before pass-
ing it to ciftex.

514

5.3. SYNTACTIC UTILITIES FOR CIF

Second, the replacement text should be externalized as much as
possible. The use of map and format files means that the same
basic program can be used for formatting according to any set
of typographic rules; only the ancillary files need to be modi-
fied. In the current version of ciftex, the program performs some
replacements internally; an objective of further development is to
remove this function from the program and to externalize it either
in more sophisticated table lookup files or in separate methods
modules.

Third, the concept of replacement should be abstracted as much
as possible. The software was written initially with the objective
of replacing data names with TEX macros. Experience suggests
that a generic transformation program could be written with the
philosophy of replacing data names and data values by directives
implemented before and after the occurrence of the data value,
and as events upon its first, last and intervening occurrences. Such
‘directives’ and ‘events’ could be mapped to arbitrary replacement
strings in any markup scheme, such as SGML, XML, HTML, TEX,
LATEX or commercial word-processing encodings.

5.3.6. Libraries for scripting languages

Recent years have seen a great increase in the popularity of script-
ing languages – broadly, computer languages where the source
code is run-time interpreted and that have powerful facilities for
interacting with other processes and operating-system utilities. In
part this is because such languages lend themselves to rapid proto-
typing; but the powerful features of languages such as Perl (Wall
et al., 2000), Python (van Rossum, 1991) and Tcl/Tk (Ousterhout,
1994) make it entirely feasible to create and maintain complex
programs that can run efficiently. Several of the applications dis-
cussed in this chapter make effective use of one or more of these
languages, either solely or alongside more traditional compiled
languages.

As the scripting languages have become more powerful, they
have also acquired more structure, so that authors now frequently
build libraries (or ‘modules’) of functions or subroutines that can
be re-used in a range of applications. This is a welcome devel-
opment, for the availability of public libraries not only reduces
the effort required to develop new applications, but also goes a
long way towards establishing common application programming
interfaces that help to standardize the way in which software from
different sources is developed.

In this section two available libraries of this type are reviewed:
STAR::Parser and PyCifRW.

5.3.6.1. STAR::Parser and related Perl modules

A collection of Perl modules has been developed at the San
Diego Supercomputer Center (Bluhm, 2000) to provide basic
library routines for object-oriented manipulation of STAR files
with restricted syntax appropriate to CIF applications. The module
name suggests that a more complete STAR implementation may
be considered in future developments, but at present the modules
do not handle nested loops or the inheritance of data values from
global blocks. Indeed, they are still rather limited in scope; never-
theless, for the programmer wishing to prototype CIF applications
in Perl, they offer a very rapid entry to parsing CIFs and construct-
ing useful data structures that can be manipulated with standard
Perl tools.

The use of some of the modules is illustrated in Fig. 5.3.6.1,
which is a simplified version of the main program loop in the appli-
cation written to typeset the CIF dictionaries printed in Part 4 of
this volume.

5.3.6.1.1. STAR::Parser

STAR::Parser is the basic parsing module and may parse either
data files or dictionaries (which may include save frames). It con-
tains a single class method, parse, which returns an array of Data-
Block objects. Each DataBlock object contains all the data items
within an individual data block of the file. Even if the file contains
only a single data block, the resulting object is passed in an array.

The contents of the data blocks may be accessed and manip-
ulated by the methods provided by the STAR::DataBlock and
STAR::Dictionary modules. They are stored internally as a multi-
dimensional hash (the Perl term for an associative array with keys
and associated values, which may themselves be complex data
objects). Keys are provided for data blocks, save blocks, categories
and data items identified during the parse. The module provides no
error checking of files or objects, against the dictionary or other-
wise – limited checking functionality is available through other
modules in this collection.

In the example of Fig. 5.3.6.1, the parse method is called at
line 9 to read a DDL2 dictionary file (indicated by the -dict=>1

parameter) and return an array of data blocks. In DDL2 dictionar-
ies (such as the mmCIF dictionary of Chapter 4.5) an entire dictio-
nary is contained within a data block; save frames partition the data
block into definitions for separate items. Normally a DDL2 CIF
dictionary has only a single data block; nevertheless, the example
program can handle multiple data blocks in the array, and traverses
the one or several data blocks in the array through a Perl foreach
construct (line 15).

5.3.6.1.2. STAR::Dictionary

The STAR::Dictionary module contains class and object meth-
ods for Dictionary objects created by the STAR::Parser module,
and is in fact a subclass of STAR::DataBlock (see next section).
Since CIF dictionaries are fully compliant STAR files, they require
little that is different from the methods developed for handling data
files. The method get save blocks is provided to return an array of
all save frames found in the Dictionary object.

In line 25 of the example, the method is called on each dic-
tionary loaded from the input file (as described above, normally
there will only be one). The method is combined with the Perl
sort function to create an array of save frames from the dictio-
nary, arranged in alphabetic order. All further manipulations of the
contents of these save frames will use the methods of the generic
STAR::DataBlock class.

5.3.6.1.3. STAR::DataBlock

This package provides several useful methods for handling the
objects within a data block returned by the STAR::Parser module.

The class has a constructor method new, which can create a
completely new DataBlock object if called with no argument. This
is of course essential for applications that wish to write new CIFs.
Alternatively, it may be called with a $file argument to retrieve an
existing object that has previously been written to the file system
using the store object method described below:

$data_obj = STAR::DataBlock->new{ -file=>$file };

Table 5.3.6.1 summarizes the object methods provided by the
package. The store method allows a DataBlock object to be serial-
ized and written to hard disk for long-term storage. The Perl public
Storable:: module is used.

The get item data method returns the data values for a named
data item. It is used frequently in the example program of
Fig. 5.3.6.1; for example, at lines 28–30 the array of categories

515

5. APPLICATIONS

1 #!/usr/local/bin/perl
2

3 use STAR::Parser;
4 use STAR::DataBlock;
5 use STAR::Dictionary;
6

7 my $file = $ARGV[0];
8

9 @dicts = STAR::Parser->parse(-file=>$file, -dict=>1);
10

11 exit unless ($#dicts >= 0); # exit if nothing there
12

13 print_document_header;
14

15 foreach $dictionary (@dicts) { # usually one
16 # Get the dictionary name and version
17 $dictname = ($dictionary->get_item_data(
18 -item=>"_dictionary.title"))[0];
19 $dictversion = ($dictionary->get_item_data(
20 -item=>"_dictionary.version"))[0];
21

22 print "Dictionary $dictname, version $dictversion\n";
23

24 # Get list of save-frame names, sorted alphabetically
25 @saveblocks = sort $dictionary->get_save_blocks;
26

27 foreach $saveblock (@saveblocks) { # For each save frame
28 @categories = $dictionary->get_item_data(
29 -save=>$saveblock,
30 -item=>"_category.id");
31 if ($#categories == 0) { # category save frame
32 format_category($saveblock); # format the category
33

34 $category = $categories[0] ;
35 foreach $block (@saveblocks) { # re-traverse blocks
36 @itemcategoryids = $dictionary->get_item_data(
37 -save=>$block,
38 -item=>"_item.category_id");
39 @itemname = $dictionary->get_item_data(
40 -save=>$block,
41 -item=>"_item.name");
42

43 if ($#itemcategoryids == 0) { # category pointer
44 format_item($block)
45 if $itemcategoryids[0] = /ˆ$category$/i;
46 } elsif ($#itemname == 0 &&
47 $itemname[0] = /ˆ_$category\./i) {
48 format_item($block);
49 }
50

51 } # end foreach of items matching current category
52 }
53 } # end foreach of save frames in the dictionary
54 } # end foreach loop per included dictionary
55

56 print_document_footer;
57 exit;

Fig. 5.3.6.1. Skeleton version of an application to format a CIF dictionary for
publication. Only the main program fragment is shown. Line numbering is
provided for referencing in the text. format category, format item and the
print document * commands are calls to external subroutines not included in
this extract.

in the input dictionary is assembled by retrieving the value asso-
ciated with the data item _category.id as the component save
frames are scanned in sequence. Note that for applications within
dictionaries, the method takes a -save=>$saveblock parameter to
allow the extraction of items from specific save frames. For manip-
ulations of data files, this parameter is omitted. In lines 17–20, the
method is called without this parameter because the name and ver-
sion of the dictionary are expected to be found in the outer part of
the file, not within any save frame.

get keys allows a user to display the structure of a CIF or dic-
tionary file and can be used to analyse the content of an unknown
input file. When written to a terminal, the string that is returned
by this method appears as a tabulation of the items present at

Table 5.3.6.1. Object methods provided by the STAR::DataBlock Perl
module

Method Description

store Saves a DataBlock object to disk
get item data Returns all the data for a specified item
get keys Returns a string with a hierarchically formatted list of hash

keys (data blocks, save blocks, categories and items)
found in the data structure of the DataBlock object

get items Returns an array with all the items present in the DataBlock
get categories Returns an array with all the categories present in the

DataBlock
insert category Inserts a category into a data structure
insert item Insert an item into a data structure
set item data Sets the data content of an item according to a supplied array

the different levels in the data structure hierarchy, each level in
the hierarchy being indicated by the amount of indentation (Fig.
5.3.6.2).

The get items and get categories methods are largely self-
explanatory. The items or categories in the currently active Data-
Block object are returned in array context.

insert item and insert category are the complements of these
methods, designed to allow the insertion of new items or cate-
gories. Where appropriate (i.e. in dictionary applications), the save
frame into which the insertion is to be made can be specified.

The remaining method, set item data, is called to set the data
of item $item to an array of data referenced by $dataref:

$data_obj->set_item_data(-item=>$item,
-dataref=>$dataref);

As usual, an optional parameter -save=>$save may be included
for dictionary applications where a save frame needs to be identi-
fied; the value of the variable $save is the save-frame name.

Note that the current version of the module does not sup-
port the creation and manipulation of data loops, although the
get item data method will correctly retrieve arrays of data values
from a looped list.

There are five methods available to set or retrieve attributes of
a DataBlock object, namely: file name for the name of the file in
which the DataBlock object was found; title for the title of the
DataBlock object (i.e. the name of the CIF data block with the
leading data_ string omitted); type for the type of data contained
– ‘data’ for a DataBlock object but ‘dictionary’ for an object in
the STAR::Dictionary subclass; and starting line and ending line
for the start and end line numbers in the file where the data block
is located. The method get attributes returns a string containing a
descriptive list of attributes of the DataBlock object.

5.3.6.1.4. STAR::Checker

This module implements a set of checks on a data block against
a dictionary object and returns a value of ‘1’ if the check was suc-
cessful, ‘0’ otherwise. The check tests a specific set of criteria:

(i) Are all items in the DataBlock object defined in the dictio-
nary?

(ii) Are mandatory items present in the data block?
(iii) Are dependent items present in the data block?
(iv) Are parent items present?
(v) Do the item values conform to item type definitions in the

dictionary?
Obviously, these criteria will not be appropriate for all purposes,

and are in any case fully developed only for DDL2 dictionaries.
An optional parameter -options=>’1’ may be set to write a list of
specific problems to the standard error output channel.

516

5.3. SYNTACTIC UTILITIES FOR CIF

data save
block block categ. item

cif_img.dic
-

_category_group_list
_category_group_list.description
_category_group_list.id
_category_group_list.parent_id

_dictionary
_dictionary.datablock_id
_dictionary.title
_dictionary.version

_dictionary_history
_dictionary_history.revision
_dictionary_history.update
_dictionary_history.version

_item_type_list
_item_type_list.code
_item_type_list.construct
_item_type_list.detail
_item_type_list.primitive_code

_item_units_conversion
_item_units_conversion.factor
_item_units_conversion.from_code
_item_units_conversion.operator
_item_units_conversion.to_code

_item_units_list
_item_units_list.code
_item_units_list.detail

ARRAY_DATA
_category

_category.description
_category.id
_category.mandatory_code

_category_examples
_category_examples.case
_category_examples.detail

_category_group
_category_group.id

_category_key
_category_key.name

Fig. 5.3.6.2. Structure of the imgCIF dictionary (Chapter 4.6) as described by the
get keys method of the STAR::DataBlock module. Only the high-order file
structure and the contents of the first category are included in this extract.

5.3.6.1.5. STAR::Writer and STAR::Filter

Two other modules are supplied by this package. STAR::Writer
is a prototype module that can write STAR::DataBlock objects out
as files in different formats; currently only the write cif method
exists to output a conformant CIF. STAR::Filter is an interactive
module that prompts the user to select or reject individual cate-
gories from a STAR::Dictionary object when building a subset of
the larger dictionary.

5.3.6.2. PyCifRW: CIF reading and writing in Python

PyCifRW (Hester, 2006) is a simple CIF input/output utility
written in Python. It does not validate content against dictionaries,
but it does provide a robust parser that has been extensively tested
against various test files containing subtle syntactic features and
against the collection of over 18 000 macromolecular CIFs avail-
able from the Protein Data Bank. The parser was implemented
using the Yapps2 parser generator (Patel, 2002) and is based on
the draft Backus–Naur form (BNF) developed during a commu-
nity exercise to review the CIF specification of Chapter 2.2.

As with the Perl library discussed above, PyCifRW presents an
object-oriented set of classes and methods. Two classes are pro-
vided, CifFile and CifBlock.

A CifFile object provides an associative array of CifBlock
objects, accessed by data-block name.

The methods available for the CifFile type are: Read-
Cif(filename), which initializes or reinitializes a file to contain the
CIF contents; GetBlocks(), which returns a list of the data-block
names in the file; NewBlock(blockname, [block contents]), which
adds a new data block to the file object; and WriteOut(comment),
which returns the contents of the current file as a CIF-conformant
string, with an optional comment at the beginning. For the New-
Block method, the optional block contents must be a valid Cif-
Block object, as described below. The NewBlock method returns
the name of the new block created, which will not be the requested
blockname if a data block of the same name already exists (this
conforms to the STAR and CIF requirement that data-block names
must be unique within a file).

A CifBlock object represents the contents of a data block. The
methods available to retrieve or manipulate the contents are: Get-
CifItem(itemname), which will return the value of the data item
with data name given by itemname (and which can be a single
value or an array of looped values); AddCifItem(data), which adds
data to the current block, where data represents either a data
name and an associated single value, or, for the case of looped
data, a tuple containing an array of data names and an array of
arrays of associated data values; RemoveCifItem(dataname), to
remove the specified data item from the current block; and Get-
Loop(dataname), which returns a list of all data items occurring in
the loop containing the data name provided. If dataname does not
represent a looped data item, an error is returned.

The GetLoop method is important for the proper handling of
looped data, and care is taken to handle loops robustly and effi-
ciently. Items that are initially looped together are kept in the same
loop structure.

Both CifFile and CifBlock objects act as Python mapping
objects, which has the advantage that the value of a data item
can be read or changed using an intuitive square-bracket nota-
tion. For example, a program can retrieve the value of a data item
named _my_data_item_name in block ‘myblockname’ of a previ-
ously opened file cf using the following syntax:

value = cf["myblockname"]["_my_data_item_name"]

The returned value is either a single item, or a Python array of val-
ues if the data item occurs in a loop. Values are set in an analogous
way and other common operations with mapping objects are also
implemented.

5.3.7. Rapid development tools

The programs described so far in this chapter tend to fulfil a single
purpose. Each program addresses a single clearly defined task and
is of benefit to a user who has no need or desire to write a cus-
tomized program. Where there is a need to write a new appli-
cation, libraries of subroutines are available to the full-time pro-
grammer, such as those described in Chapters 5.4 to 5.6. However,
in between these extremes, there are a large number of cases for
which there is a need to combine the functionality of a number of
existing programs without incurring the overhead of writing a new
integrated application.

This section describes utilities that assist the development of
new applications from existing software.

517

5. APPLICATIONS

5.3.7.1. ZINC: an interface to CIF for standard Unix tools

Unix and derivative operating systems provide a convenient
environment for rapid prototyping of programs acting on textual
data. The convenience arises from the facility to chain applications
together in a ‘pipeline’, where the output from an application may
be passed directly to the input channel of another application with-
out needing intermediate disk files for storage; and from the very
rich set of utilities supplied with the typical Unix command shell,
which permit files to be concatenated, split, compared, searched,
stream-edited and otherwise transformed.

Many users are familiar with these utilities and can rapidly
develop prototype or short-lived applications of great power by
chaining them together as required. There is a temptation to use
such techniques to manipulate CIFs, which as ASCII files are well
suited to this. However, there are some features of the CIF syn-
tax that are at variance with the conventional Unix idiom of stor-
ing data tags and their associated values within a basic unit of a
line (i.e. a sequence of characters terminated by an end-of-line
character code). Although CIFs are built from ASCII-character-
populated lines, data values may be placed on a different line from
that containing the parent data name (this is almost always the case
for looped lists).

5.3.7.1.1. Description of the ZINC format

The ZINC format (Stampf, 1994) was developed to transform
CIF data into an isomorphous format suitable for manipulation by
standard Unix utilities.

The manner in which Unix textual utilities work suggests that
an appropriate working format is one in which every individual
CIF data value is available within a single-line textual record.
The record must also contain information about the context of the
value, conveyed through: the name of the data block in which the
data value occurs; its associated data name (from which the mean-
ing of the data value is inferred); and for recurrent data (i.e. values
in a looped list) an indication of the list in which the data value
occurs and a counter of its current occurrence in that list. In prac-
tice, each record is structured as a data line containing five TAB-
separated fields in the order

blockcode name index value list-id

where blockcode is the name of the CIF data block (the leading
data_ string is omitted); name is the data name; index is a zero-
based index of the number of occurrences of the data name within
a loop (with a null value if the data occur outside a loop); value
is the data value itself; text strings extending over several lines are
collapsed into a single line with the replacement of the end-of-line
character by the sequence \n; and list-id is a list identifier, stored
as the data name within the list that sorts earliest (because it is a
purely syntactic transformation, the utility does not consult a dic-
tionary file for the correct _list_reference identifying token).

Comments in the CIF are also stored, to permit regeneration of
the original file by an inverse transformation; and because it is
often convenient to read such interpolations, especially in interac-
tive activities with CIFs of which the user has no prior knowledge.
Comments are stored with a value of ‘(’ in the data-name field.
They are also numbered (starting from zero) in the index field of
the ZINC record.

Most details of the ZINC transformation are illustrated by the
simple example in CIF format shown in Fig. 5.3.7.1(a). This file
transformed to ZINC format would appear on a display terminal
as illustrated in Fig. 5.3.7.1(b). However, the spacing is decep-
tive, since typical display terminals convert TAB characters to a

A simple CIF

data_object

description of a simple
polygon

_name
;
triangle
;

loop_
_x _y
0.0 0.0
1.0 0.0
0.0 1.0

_num_sides 3

(a)

(0 # A simple CIF
object (1 # description of a simple
object (2 # polygon
object _name ;\ntriangle\n;
object _x 0 0.0 _x
object _y 0 0.0 _x
object _x 1 1.0 _x
object _y 1 0.0 _x
object _x 2 0.0 _x
object _y 2 1.0 _x
object _num_sides 3

(b)

(0 # A simple CIF
object (1 # description of a simple
object (2 # polygon
object _name ;\ntriangle\n;
object _x 0 0.0 _x
object _y 0 0.0 _x
object _x 1 1.0 _x
object _y 1 0.0 _x
object _x 2 0.0 _x
object _y 2 1.0 _x
object _num_sides 3

(c)

Fig. 5.3.7.1. ZINC transformation of CIF. (a) is a sample file in CIF format. (b)
shows the output to a display terminal when this file is transformed by cif Zinc.
(c) The same output as (b), but with TAB characters represented by special
graphical characters.

variable number of spaces. A more accurate (albeit less legible)
representation of the output is given in Fig. 5.3.7.1(c).

Note the following points: the data-block name is initially null;
each comment line is numbered in sequence from zero; the index
field is null for data names that are not within looped lists.

5.3.7.1.2. ZINC-based utilities

The purpose of ZINC is to form an intermediate stage in pipeline
processes involving Unix tools, and therefore CIF data in ZINC
format have only a transitory existence. The ZINC distribution
package provides the complementary tools cifZinc and zincCif
required to interconvert formats; and in addition a few sample
applications are provided as examples for Unix programmers.

5.3.7.1.2.1. cifZinc

cifZinc takes a CIF name as a command-line argument or the
CIF itself from standard input and produces a ZINC-format file on
standard output. It has one option, ‘-c’, which removes comments
(which arguably have no place in a CIF).

518

5.3. SYNTACTIC UTILITIES FOR CIF

5.3.7.1.2.2. zincCif

zincCif is a Perl script that takes a ZINC-format file (again from
standard input or as a name on the command line) and pretty prints
the corresponding CIF to standard output. Often, the pipeline
cifZinc a.cif | zincCif > b.cif produces a more attractive
CIF than the original.

5.3.7.1.2.3. zincGrep

The shell script zincGrep is the utility most requested by those
seeing a CIF for the first time. It allows a regular-expression search
of a ZINC-format file (or a CIF specified on the command line,
which is converted to a ZINC-format file first) and reports the
block name, data name, index and value. For example, if the file
describing a triangle in the last section were called simple.cif, the
command zincGrep _name simple.cif would produce

object _name ;\ntriangle\n;

5.3.7.1.2.4. cifdiff

cifdiff is a C-shell script that takes two CIFs and lists the differ-
ences between them. Unlike the standard Unix utility diff, which
compares files line-by-line, cifdiff can determine differences that
are independent of reordering and white-space padding.

This script takes each CIF, converts it to a ZINC-format file, then
sorts it, first based on the data-block name, then (keeping the loops
together) on the data name. It then removes the last field (which is
not part of the CIF) and stores the remainder in temporary files. It
then runs the standard diff program against these reordered tem-
porary files. This is remarkably effective both in finding any dif-
ferences and in providing the context (it names the block and data
name as well as the value) needed to understand the differences.

Fig. 5.3.7.2 illustrates two CIFs that are very different in the
presentation of their contents, but have only a small difference of
substance in their content. Fig. 5.3.7.3 indicates the output from
cifdiff that identifies the changed data.

5.3.7.1.2.5. zb

zb is a small (less than 200 lines) Tcl/Tk program (Ouster-
hout, 1994) that provides a simple graphical front end to a ZINC-
format file or CIF allowing the user to browse through the contents.
Multiple files can be viewed simultaneously, as can multiple data
blocks, on any X terminal. zb recognizes command-line argument
file names in the form *.cif as being in CIF format and converts
them to ZINC format automatically.

5.3.7.1.2.6. zincNl

zincNl is a Perl script that takes a ZINC file and creates a
Fortran-compatible namelist file allowing for easy access to any
CIF by Fortran programs without the need for extensive I/O
libraries or reprogramming. As with zb above, it will automatically
convert a CIF to a ZINC-format file if it needs to.

For a more substantial tool providing CIF input functions in For-
tran and C, see the discussion below of CifSieve (Section 5.3.7.2).

5.3.7.1.2.7. zincSubset

zincSubset is another C-shell script which is very short but very
useful. It allows a user to generate a custom subset of any ZINC-
format file (or CIF) simply by listing the desired data blocks and
data names. The script has two file arguments, the first of which
specifies a file with regular expressions that specify what is to be

data_sample
_title ’scatter graph’
_description

; A collection of x, y coordinates of points
drawn in specified colours

;
loop_

_x _y _colour
0 0 red
1 1 red
2 4 red
3 9 orange
4 16 orange
5 25 orange

_status complete

(a)

data_sample
_status complete
loop_ _y _x _colour

0 0 red
1 1 red
2 2 red
9 3 orange
16 4 orange
25 5 orange

_title ’scatter graph’ _description
; A collection of x, y coordinates of points

drawn in specified colours
;

(b)

Fig. 5.3.7.2. Two example files in CIF format differing greatly in layout but little in
content: (a) sample1.cif, (b) sample2.cif.

% cifdiff sample1.cif sample2.cif
18c18
< sample _y 2 4

> sample _y 2 2

Fig. 5.3.7.3. Output from cifdiff comparing files sample1.cif and sample2.cif of
Fig. 5.3.7.2. The entries in each line comprise the data-block name, the variable
name, the zero-based index of the occurrence of the value in a looped list and
the value. Hence it is the third value of _y in the loop that has changed.

included in the subset, and the second of which is the ZINC-format
file itself (or standard input). It allows two options: ‘-c’ to remove
comments and ‘-v’ to invert the sense of the search.

It converts the CIF into a ZINC-format file, uses the Unix grep
program to search through the ZINC-format file for patterns that
appear in the regular-expression file and pretty prints the result.
For example, the command

zincSubset defs cif_core.dic > cifdic.defs

will produce a subset of the core CIF dictionary that contains only
the names and definitions when the file named ‘defs’ contains
two lines with the TAB-surrounded word ‘_name’ and the TAB-
surrounded word ‘_definition’.

All the tools listed in this section operate by design in concert
with each other, providing the opportunity for generating increas-
ingly complex tools. For example, to generate the Fortran namelist
input file with only certain data items, a pipeline of zincSubset
and zincNl will suffice. As more tools are developed, the range of
applications will increase many-fold.

519

5. APPLICATIONS

5.3.7.2. CifSieve: automatic construction of CIF input func-
tions

Among the utilities described in the ZINC package above was
a tool to generate Fortran namelist files. It is a common require-
ment of applications developers that they should be able swiftly to
convert existing programs to read CIF data. While libraries such
as CIFtbx (Chapter 5.4) and CIFLIB (Westbrook et al., 1997) offer
very powerful functions for building CIF applications, it can be
time-consuming to integrate them with existing software. It is a
goal of CifSieve (Hester & Okamura, 1998) to enable the rapid cre-
ation of new CIF-conversant software by using a CIF dictionary as
a template for input data structures.

The CifSieve program runs on Unix systems with installed ver-
sions of the software utilities and programming languages bison or
yacc, flex, Perl (Wall et al., 2000) and C.

5.3.7.2.1. Overview of the process

The data names in a CIF are defined in a dictionary written
in DDL1 or DDL2 formalism. Therefore, information about the
data type and array structure of data variables is already to hand
for a software author wishing to determine how to read CIF data
into a program’s data structures. The CifSieve process requires that
the programmer augment the relevant CIF dictionary by adding to
a copy of the definition of desired items a new attribute, named
_variable_name, that passes to the application program the name
of the associated program variable.

A program BuildSiv then reads the augmented dictionary and
produces a subroutine capable of reading a CIF and transferring the
data items tagged in the augmented dictionary to internal variable
storage. The associated data structure is presented in an ancillary
file which must be linked to the application program.

CifSieve can produce input subroutines and header or include
files for C and Fortran language programs. For C applications, the
input subroutine is called cifsiv and is invoked with arguments
cifsiv (CIF, block) where CIF is the name of the input CIF and
block is the name of the data block from which data should be read.
The data structure is declared in a header file cifvars.h which must
be included in subroutines that manipulate the data input from the
CIF. For Fortran applications, the input subroutine is also called
cifsiv , but takes an additional argument, blockbeg, which is the
address of the common block containing the input variable names,
declared in the include file forcif.inc.

5.3.7.2.2. The augmented DDL dictionary

Fig. 5.3.7.4 is an example of the annotations necessary to flag
the data names that refer to data items desired to be input from a
CIF. The current implementation requires that a copy of the DDL
dictionary relevant for the CIF be physically edited to include
the new _variable_name attribute. The inclusion of such a new
attribute will not affect the use of the CIF dictionary for other pur-
poses and by other software.

The definition blocks of data items that are not to be read by the
application should be left unchanged.

The value assigned to the _variable_name attribute is the name
of the variable declared in the application program for storing the
input data item. If the items to be input are part of an array (i.e.
they exist in the CIF as a looped list), the variable name should be
supplied as a dimensioned array variable, e.g. atsiteu[1000] in
the example of Fig. 5.3.7.4.

The same attribute (_variable_name) may be inserted in DDL1
or DDL2 dictionaries. Separate parsers are supplied for use with

data_atom_site_aniso_label
_name ’_atom_site_aniso_label’
_category atom_site
_type char
_variable_name mylabel[50]
_list yes

data_atom_site_aniso_U_
loop_ _name ’_atom_site_aniso_U_11’

’_atom_site_aniso_U_12’
’_atom_site_aniso_U_13’
’_atom_site_aniso_U_22’
’_atom_site_aniso_U_23’
’_atom_site_aniso_U_33’

_category atom_site
_variable_name atsiteu[1000]
_type numb

data_reflns_number_
loop_ _name ’_reflns_number_total’

’_reflns_number_observed’
_category reflns
_type numb
_enumeration_range 0:
_variable_name reftot

data_refine_ls_extinction_method
_variable_name extmet
_name ’_refine_ls_extinction_method’
_category refine
_type char
_enumeration_default ’Zachariasen’

Fig. 5.3.7.4. Extracts from an augmented DDL1 dictionary (version 1.0 of the core
CIF dictionary). The additional _variable_name entry is shown in italics.

either format. When BuildSiv is invoked, the parser reads the
augmented dictionary and identifies the data items required by
the target input subroutine by the presence of a _variable_name

attribute in the definition block. The definition is read and the
relevant values of the type (DDL attribute _type), item name
(_name) and variable name are output in a simple tag–value for-
mat and in a standard order. For DDL2 dictionaries, values of
_item_aliases.alias_name and _item_linked.parent_name, if
present, are also output. The DDL parser thus transforms and sim-
plifies the dictionary contents.

Where the item-name attribute occurs inside a loop (i.e. sev-
eral data names occur in a single definition block in the dictio-
nary), the variable name for that particular definition block will be
given an extra array dimension by CifSieve, equal to the number
of names in the loop. When a name from this loop is found in a
CIF, the value will be read into the respective array location. If an
_item_aliases.alias_name attribute is present (DDL2), the alias
will also be recognized in CIF input files. If this attribute occurs
together with looped item names in the domain dictionary, an
attempt is made to determine the parent _item.name in the loop to
which this _item_aliases.alias_name refers. This is done within
the BuildSiv program by examining _item_linked.parent_name

entries within the same definition block.
Data typing is simplified; the _item_type.code values of DDL2

dictionaries are collapsed onto primitive ‘numb’ or ‘char’ types.
Values of type numb are declared and stored as type double (C) or
REAL*8 (Fortran), while values of type char are stored as charac-
ter arrays char[84] (C) or CHARACTER*84 (Fortran). In conse-
quence, multiple lines of text cannot be retrieved with this version
of CifSieve. Note in particular that values declared as of type ‘int’
in DDL2 dictionaries will be stored as double-precision real.

520

5.3. SYNTACTIC UTILITIES FOR CIF

/* These declarations have been automatically
generated by the cif file input/output function
generator. This file should be included in any
routines that call these functions */

typedef char cifstring[84];
/* to avoid array complications later */

#define MYLABELMAX 50
#define ATSITEUMAX 1000
typedef double atsiteutype [6];
#ifdef CIFVARDEC

cifstring errormes; /* an error message */
int errornum; /* an error number */
cifstring mylabel[50];

/*data_atom_site_aniso_label*/
atsiteutype atsiteu[1000];

/*data_atom_site_aniso_U_*/
atsiteutype atsiteuesd[1000];
cifstring extmet;

/*data_refine_ls_extinction_method*/
double reftot [2]; /*data_reflns_number_*/
double reftotesd [2];

#else
extern cifstring errormes; /* an error message */
extern int errornum; /* an error number */
extern cifstring mylabel[50];

/*data_atom_site_aniso_label*/
extern atsiteutype atsiteu[1000];

/*data_atom_site_aniso_U_*/
extern atsiteutype atsiteuesd[1000];
extern cifstring extmet;

/*data_refine_ls_extinction_method*/
extern double reftot [2]; /*data_reflns_number_*/
extern double reftotesd [2];

#endif

Fig. 5.3.7.5. Header file cifvars.h for a C application built by BuildSiv from the
augmented DDL dictionary of Fig. 5.3.7.4.

5.3.7.2.3. Input to a C application program

When a DDL dictionary dictfile has been edited in accordance
with the description above, the program BuildSiv may be run under
a Unix-like operating system with a command of the form

BuildSiv dictfile ddlversion

where ddlversion takes the values ‘1’ or ‘2’ to indicate that a DDL1
or DDL2 parser is appropriate. If the option ‘-e’ is given before
dictfile, variable definitions and read capability for standard uncer-
tainty values will be included as well. The name of the variable
that will hold the standard uncertainty is the name given by the
programmer with the string esd appended.

An object file cifsiv.o is produced together with a header file
cifvars.h. Some source-code files are also produced as interme-
diate files in the lexical analysis and parse phases of the soft-
ware build; these may be deleted. The object file must be linked
against the other object files when the application program is
compiled and references to the header files must be introduced
(generally through C preprocessor #include directives) within the
application code where access to the imported data structures is
required.

Fig. 5.3.7.5 is an example of the header file cifvars.h built when
BuildSiv reads the augmented dictionary of Fig. 5.3.7.4 with the
‘-e’ option to interpret and store standard uncertainties.

The integer variable errornum stores a nonzero value if an error
occurs in attempting to read a CIF, and an error message is stored
in the character array errormes, indicating the nature of the prob-
lem. Errors generated by the input subroutine cifsiv are not fatal
to the parent application program, and will at worst discard the

/* A simple example application of the automatically
generated cifsiv_ function */

#include <stdio.h>
#include "cifvars.h"

main(int argc, char *argv[])
{

int i;
char filename[80];
char block[80];
printf("Please enter CIF file name: ");
scanf("%s", filename);
printf("Please enter data block name ");
printf("(without data_ prepended): ");
scanf("%s", block);
errornum = 0;
cifsiv_(filename,block);
if(errornum != 0) /* an error, we have problems */

{
printf("An error occurred in reading the

CIF:\n");
printf("%s",errormes);
}

for(i=0;i<5;i++)
{
printf("Atom %d: %s %f %f\n", i, mylabel[i],

atsiteu[i][0], atsiteu[i][1]);
}
printf("Total reflections: %.f\n", reftot[0]);
printf("Extinction method: %s\n", extmet);

}

Fig. 5.3.7.6. An example C program designed to read CIF data as tagged in the
augmented DDL dictionary of Fig. 5.3.7.4.

particular loop block or data item affected. The parser operates by
discarding CIF data upon encountering an error until it reaches an
understandable set of input values. So, for example, if three num-
bers appear after an item name instead of one, the second two will
be ignored after the error variables have been set, and parsing will
continue. Similarly, if a serious error occurs within a loop, such
as the appearance of an item name not matching an array variable,
the entire loop is normally ignored. If a new packet of looped data
exceeds the specified array limits, all further data in that loop are
ignored.

The cifsiv function has prototype

void cifsiv_(char* filename, char* blockname)

and requires pointers to character strings containing the name of
the input file and the data-block code from which input is required.

A simple example C application illustrating the use of the cifsiv
subroutine is given in Fig. 5.3.7.6.

5.3.7.2.4. Input to a Fortran application program

A Fortran program can make use of the C input function gen-
erated by BuildSiv as long as the compiler used is capable of
linking C and Fortran modules. For Fortran applications, the ‘-f ’
command-line option is used:

BuildSiv -f dictfile ddlversion

A C structure is defined for use within the cifsiv subroutine
and an identically constructed Fortran common block is built for
use within Fortran routines. The first variable within the common
block must be passed as an additional argument when the cifsiv
function is called. In the current implementation, that variable is

521

5. APPLICATIONS

C The following common block corresponds to a
C structure defined in the C header, which is written
C to by routine ’cifsiv’. In order to correctly write
C to this common block, ’cifsiv’ should be called
C with a *third* argument which will always be
C ’blockbeg’.

REAL BLOCKBEG
CHARACTER*84 ERRORMES
INTEGER ERRORNUM
CHARACTER*84 mylabel(50)
REAL*8 atrat(50)
REAL*8 atratesd(50)
REAL*8 atsiteu(6,500)
REAL*8 atsiteuesd(6,500)
CHARACTER*84 extmet
REAL*8 reftot(2)
REAL*8 reftotesd(2)
COMMON/CIFCMN/BLOCKBEG,ERRORMES,ERRORNUM,mylabel,

*atrat,atratesd,atsiteu,atsiteuesd,extmet,reftot,
*reftotesd

Fig. 5.3.7.7. Fortran include file forcif.inc for an application built by BuildSiv from
the augmented DDL dictionary of Fig. 5.3.7.4.

PROGRAM FORGET
include ’forcif.inc’
call cifsiv("tbshort.cif","tbal03",blockbeg)
do i = 1,4

write(*,*) mylabel(i), atsiteu(1,i),
* atsiteu(2,i)
enddo
write(*,*) reftot(1)
write(*,*) extmet
end

Fig. 5.3.7.8. An example Fortran program designed to read CIF data as tagged in
the augmented DDL dictionary of Fig. 5.3.7.4.

always called ‘BLOCKBEG’. The input subroutine is thus called
from within a Fortran program by a line of the type

CALL CIFSIV(FILE, BLOCK, BLOCKBEG)

where FILE and BLOCK are, respectively, the name of the input
file and data block.

Fig. 5.3.7.7 is an example Fortran include file generated by
BuildSiv and Fig. 5.3.7.8 is an example application incorporating
this file. As with the C examples, the CIF data to be read are those
specified in the dictionary augmented according to Fig. 5.3.7.4.

It may be noted that the C header file generated by the For-
tran implementation of BuildSiv (and which is used directly by
the C object file produced) is callable by any other C program
or subroutine. The Fortran common block is represented by a C
structure named cifcmnptr, so that the variable names are stored
within that structure and must be addressed through the C → oper-
ator. That is, an additional C routine compiled in with the For-
tran example program of Fig. 5.3.7.7 would refer to the variable
holding the value of the input _refine_ls_extinction_method as
(char *)cifcmnptr->extmet.

5.3.8. Tools for mmCIF

The complex relationships between the components of a macro-
molecular structure at various levels of detail are richly described
by the data names in the mmCIF dictionary, but their number
and complexity demand more heavyweight tools for proper han-
dling. Input/output for small-molecule or inorganic structures can

often be handled by a simple CIF parse and identification of the
desired components of one or a few looped data structures. For
macromolecules, multiple categories must be loaded simultane-
ously, and the integrity of relationships between items in the dif-
ferent categories must be properly maintained. For this reason, the
most effective tools for mmCIF-based applications have high-level
interactions with the mmCIF or related dictionaries, and necessar-
ily involve more complex data manipulations.

In this section are discussed three software systems that are
available for work with macromolecular structures: CIFOBJ and
related libraries, which provide a long-established and complete
application program interface (API) to dictionaries and data files;
OpenMMS, an exciting development allowing abstract data rep-
resentations (based on the mmCIF dictionary definitions) to be
exchanged between applications using an intermediate middleware
layer; and mmLib, which is a Python toolkit for biomolecular struc-
ture applications. These latter two may come closer to the area
of domain-specific applications than most of the generic tools we
have discussed in this chapter. However, they demonstrate how the
abstract data model represented by the mmCIF dictionaries can
effectively be imported into a diverse range of programming envi-
ronments.

5.3.8.1. CIFOBJ and related libraries

Early in the development of the mmCIF dictionary, the Nucleic
Acid Database at Rutgers University (Berman et al., 1992) cre-
ated a number of CIF libraries and utilities to underpin data-
processing activities. Much of this development work was carried
across when the curatorship of the Protein Data Bank was trans-
ferred to the Research Collaboratory for Structural Bioinformatics
(RCSB; Berman et al., 2002), and the software provides the engine
for many of the robust and industrial-strength database operations
of these organizations.

CIFLIB (Westbrook et al., 1997) was an early class library, no
longer supported, that was developed to provide an API to macro-
molecular CIF data files and to the associated dictionaries (Chap-
ters 3.6 and 4.5) and underlying dictionary definition language
(DDL2) files (Chapter 2.6).

The RCSB Protein Data Bank now distributes object-oriented
parsing tools (CIFPARSE OBJ; Tosic & Westbrook, 2000) which
fully support CIF data files and their underlying metadata descrip-
tions in dictionaries and DDL2 attribute sets, and a comprehensive
library of access methods for data and dictionary objects at cate-
gory and item level.

The information infrastructure of the Protein Data Bank, built
upon these tools, is discussed in Chapter 5.5. All the software
produced for this purpose is distributed with full source under
an open-source licence, to promote the development of mmCIF
tools and to encourage interoperability with other software envi-
ronments.

5.3.8.2. OpenMMS

Object classes represent the first stage in abstracting related
data components. By building structured software modules that
can manage the small-scale interactions between data components,
the programmer can write more succinct code to handle the inter-
actions between much higher-level data constructs. An API then
permits third parties to handle the larger-scale objects without any
need to know the internal workings of the class library. The next
logical step is to present a standard set of ‘objects’ representing
complete logical entities to any programmer for ‘plug-and-play’
incorporation into new applications.

522

5.3. SYNTACTIC UTILITIES FOR CIF

The Life Sciences Research domain task force of the Object
Management Group (OMG, 2001) is concerned with the devel-
opment of standards for data exchange in biomolecular sciences,
and in 2002 approved a macromolecular structure Corba speci-
fication. Corba (the common object request broker architecture)
is a middleware architecture intended to serve just this pur-
pose of providing access to standard objects representing discrete
logical entities suitable for programmatic manipulation. Corba
promotes interoperability across networked applications by sep-
arating entirely the API from the implementation of the under-
lying data objects. For applications such as the macromolecular
structures database hosted by the Protein Data Bank, the attraction
of networked interoperability is that information can be accessed
through distributed and federated databases, and can be delivered
on demand to any compatible software.

A Corba application comprises an interface definition language
(IDL) and an API that together define access to a data structure that
encapsulates the abstract representation of the objects and relation-
ships relevant to a particular area of knowledge. In general terms,
this data structure may be described as an ‘ontology’ (Westbrook
& Bourne, 2000). The ontology adopted for macromolecular struc-
ture (MMS) data was based on the mmCIF dictionary following a
submission by the Research Collaboratory for Structural Bioinfor-
matics to a Request for Proposal (Greer, 2000).

5.3.8.2.1. The OpenMMS toolkit

In practice, the ontology was developed in a ‘metamodel’ that
combined the definitions and relationships between data items
specified in the mmCIF dictionary with a generic metamodel
framework. The metamodel extracts the information in the mmCIF
dictionary but maintains it in a representation that is independent
of the mmCIF STAR or any other file format. The standard build-
ing block of the metamodel is an Entry object, modelling a single
macromolecular structure.

From a suitable metamodel, it then becomes relatively straight-
forward to generate alternative expressions of the information to
suit different access requirements. The OpenMMS toolkit (Greer
et al., 2002) was built using Java source code to generate a Corba
interface, an SQL schema for relational database loading and an
XML representation of macromolecular data sets (Fig. 5.3.8.1).

The toolkit contains an mmCIF parsing module capable of direct
access to the underlying data archive of mmCIF data files. This is
important, because the data files represent a common reference
for all the derived representations. Any errors or discrepancies
between the expressed forms of the Corba, XML or SQL represen-
tations are resolved against the standard mmCIF reference form.

The relational database supporting an SQL-92 compatible inter-
face provides an appropriate API for many applications, particu-
larly ones that require extensive string searches. The close rela-
tionship between the mmCIF data model and relational database
models has already been described earlier in this volume (Chapter
2.6).

Advantages of the SQL interface are that it provides rapid access
direct to the binary data storage representation and that individual
components of a data set may be efficiently retrieved without the
need to search sequentially through an entire entry.

This efficiency of access and the ability to retrieve individual
MMS data elements from a remote server is best realized through
the Corba interface, the primary purpose of which is indeed to
facilitate such high-performance access.

The bulk exchange of data is addressed through the gener-
ation of XML files. XML is a simple, powerful and widely
used standard for interchanging data, and its use for transporting

Fig. 5.3.8.1. The OpenMMS metamodel and data flow.

macromolecular data obviates the need for target applications to
build their own STAR parsers. However, the use of markup tags
around every individual data element does make the files much
larger than their mmCIF progenitors. This is not an insurmount-
able problem in large-scale application environments, but it can
undermine the effectiveness of XML as a representation mecha-
nism in such applications as web browsers. A possible approach
to this could be to define different, less verbose, XML representa-
tions and populate these on demand from a database store, either
by SQL or XML queries. This is not an approach that the current
OpenMMS toolkit supports directly.

Fig. 5.3.8.2 is an extract from an XML data file generated
from the PDB structure 1xy2. The XML uses a reserved name
space PDBx conforming to the schema http://deposit.pdb.org/
pdbML/pdbx-v0.905.xsd. Data tags map cleanly to the corre-
sponding data names in the mmCIF dictionary formed by concate-
nating the XML element name with its parent category name. For
example, the entry <PDBx:length_a>27.080</PDBx:length_a>

included in the <PDBx:cellCategory> container tag can
be directly translated to the corresponding mmCIF data
item _cell.length_a 27.080. CIF data loops are repre-
sented by repeated instances of the XML tag representing
the corresponding CIF data name (for example, the multi-
ple <PDBx:audit_author name> tags are equivalent to a CIF
loop_ _audit_author.name construct). Nonstandard items
with a pdbx prefix (e.g. <PDBx:pdbx_description> in the
<PDBx:entityCategory> group) refer to private data names in
the PDB extension dictionary (Appendix 3.6.2).

5.3.8.3. mmLib: a Python toolkit for bioinformatics applica-
tions

While the libraries developed for use within the Protein Data
Bank provide powerful functionality, their very size and complex-
ity make them inappropriate for some applications. Indeed, con-
siderable effort may be needed to compile the C++ code on non-
standard platforms. The mmLib toolkit (Painter & Merritt, 2004)

523

5. APPLICATIONS

<?xml version="1.0" encoding="UTF-8" ?>
<PDBx:datablock datablockName="1XY2"
xmlns:PDBx="http://deposit.pdb.org/pdbML/pdbx-v0.905.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://deposit.pdb.org/pdbML/pdbx-v0.905.xsd
pdbx-v0.905.xsd">

<PDBx:audit_authorCategory>
<PDBx:audit_author name="Cooper, S."></PDBx:audit_author>
<PDBx:audit_author name="Blundell, T.L.">

</PDBx:audit_author>
<PDBx:audit_author name="Pitts, J.E."></PDBx:audit_author>
<PDBx:audit_author name="Wood, S.P."></PDBx:audit_author>
<PDBx:audit_author name="Tickle, I.J."></PDBx:audit_author>

</PDBx:audit_authorCategory>
<PDBx:cellCategory>
<PDBx:cell entry_id="1XY2">
<PDBx:length_a>27.080</PDBx:length_a>
<PDBx:length_b>9.060</PDBx:length_b>
<PDBx:length_c>22.980</PDBx:length_c>
<PDBx:angle_alpha>90.00</PDBx:angle_alpha>
<PDBx:angle_beta>102.06</PDBx:angle_beta>
<PDBx:angle_gamma>90.00</PDBx:angle_gamma>
<PDBx:Z_PDB>4</PDBx:Z_PDB>

</PDBx:cell>
</PDBx:cellCategory>
<PDBx:citationCategory>
<PDBx:citation id="primary">
<PDBx:title>Crystal structure analysis of

deamino-oxytocin: conformational flexibility
and receptor binding.</PDBx:title>

<PDBx:journal_abbrev>Science</PDBx:journal_abbrev>
<PDBx:journal_volume>232</PDBx:journal_volume>
<PDBx:page_first>633</PDBx:page_first>
<PDBx:page_last>636</PDBx:page_last>
<PDBx:year>1986</PDBx:year>
<PDBx:journal_id_ASTM>SCIEAS</PDBx:journal_id_ASTM>
<PDBx:country>US</PDBx:country>
<PDBx:journal_id_ISSN>0036-8075</PDBx:journal_id_ISSN>
<PDBx:journal_id_CSD>0038</PDBx:journal_id_CSD>

</PDBx:citation>
</PDBx:citationCategory>
<PDBx:computingCategory>
<PDBx:computing entry_id="1XY2">
<PDBx:structure_solution>SHELX</PDBx:structure_solution>
<PDBx:structure_refinement>SHELX-76

</PDBx:structure_refinement>
</PDBx:computing>

</PDBx:computingCategory>
<PDBx:database_2Category>
<PDBx:database_2 database_id="PDB" database_code="1XY2">

</PDBx:database_2>
</PDBx:database_2Category>
<PDBx:entityCategory>
<PDBx:entity id="1">
<PDBx:type>polymer</PDBx:type>
<PDBx:src_method>man</PDBx:src_method>
<PDBx:pdbx_description>OXYTOCIN</PDBx:pdbx_description>
<PDBx:formula_weight>978.189</PDBx:formula_weight>
<PDBx:pdbx_number_of_molecules>1

</PDBx:pdbx_number_of_molecules>
</PDBx:entity>
<PDBx:entity id="2">
<PDBx:type>water</PDBx:type>
<PDBx:src_method>nat</PDBx:src_method>
<PDBx:pdbx_description>water</PDBx:pdbx_description>
<PDBx:formula_weight>18.015</PDBx:formula_weight>
<PDBx:pdbx_number_of_molecules>7

</PDBx:pdbx_number_of_molecules>
</PDBx:entity>

</PDBx:entityCategory>

Fig. 5.3.8.2. Sample XML output from the OpenMMS XML generator. Lines have
been omitted or wrapped to fit the present column width.

addresses this by supplying a library of object-oriented routines
implemented in Python (van Rossum, 1991) that are designed to
integrate with existing or new applications in an easy way.

The objective of mmLib is to build a support platform to han-
dle the increasingly rich data about macromolecular structure

Table 5.3.8.1. The modules provided by the mmLib toolkit

mmLib.mmCIF mmCIF parser
mmLib.PDB PDB format parser
mmLib.Library Base chemical library
mmLib.Extensions.CCP4Library Data retrieval from CCP4 monomer library
mmLib.Elements Chemical data for elements
mmLib.AminoAcids Chemical data for amino acids
mmLib.NucleicAcids Chemical data for nucleic acids
mmLib.Structure Macromolecular structure model
mmLib.GLViewer OpenGL visualizer

import mmLib
from mmLib.FileLoader import LoadStructure, SaveStructure

struct = LoadStructure(
fil = cif,
format = "PDB",
build_properties = ("no_bonds",))

SaveStructure(
fil = pdb,
structure = struct,
format = "CIF")

Fig. 5.3.8.3. A snippet of code illustrating mmCIF/PDB file format conversion with
the mmLib toolkit.

available to structural biologists. Not only do applications need
to be able to handle atomic positions and build appropriate three-
dimensional structure representations; but links to and integra-
tion with information on sequence, homologous structures, and
biochemical, genetic and medical form and function are also
demanded from individual program systems. Since much of these
data are available from external databases in a variety of formats,
mmLib will not be restricted to the handling of files in a single for-
mat. Its initial release provides support for mmCIF, for the PDB
format files that historically have been used for representation of
macromolecular structures (Westbrook & Fitzgerald, 2003) and for
the MTZ format used by the CCP4 program suite (Collaborative
Computational Project, Number 4, 1994).

Table 5.3.8.1 lists the main modules in the current release.
mmLib.mmCIF and mmLib.PDB are read/write parsers for mmCIF
and PDB format files, respectively, which handle file input and
output in these formats, and provide support for inspection or
modification of such file formats. They are typically used in con-
junction with the mmLib.FileLoader component to populate the
mmLib.Structure internal representation of the macromolecular
structure. The high-level abstraction of such functionality allows
for very succinct programmatic constructs. Fig. 5.3.8.3 illustrates
this with a program snippet that (apart from the necessary system
calls for file management) achieves the conversion of an mmCIF
input file to a PDB format representation. This is sufficiently
robust and lightweight to act as an input filter to software already
designed for handling PDB format files.

mmLib.Structure represents the internal representation of a
molecular structure and is implemented as an object hierarchy
with four basic object classes: Structure, Chain, Fragment and
Atom. The Fragment class has subclasses AminoAcidResidue and
NucleicAcidResidue. In order to build a complete representation of
a structure, the toolkit may need to load data from an input mmCIF
or PDB format file, and also from standard data sets of proper-
ties of individual monomers and chemical elements; these standard
libraries of chemical properties are provided by the mmLib.Library
module. The core mmLib source includes a limited library
of such chemical properties (accessible through the subclasses
mmLib.Elements, mmLib.AminoAcids and mmLib.NucleicAcids)

524

5.3. SYNTACTIC UTILITIES FOR CIF

and also provides support for the extensive CCP4 monomer library
through the mmLib.Extensions.CCP4Library. The naming of this
class expresses the intention that other standard data sources
should be made accessible in the same way.

The CCP4 monomer library is in fact included with the soft-
ware as a directory tree of small files in mmCIF format, which
are loaded into the Structure object through the normal use of the
toolkit’s mmCIF parser.

mmLib.GLViewer is a module provided to support visualization
programs using the OpenGL graphics environment. Although it
does not by itself provide a stand-alone viewer, it can be incor-
porated into many common graphics application building environ-
ments. An example molecular viewer, mmView, is provided with
the distribution as an example of an application using the GTK
graphical user interface, a popular toolkit in Linux.

5.3.9. Concluding remarks

CIF is a domain-specific format that cannot attract the num-
ber of programmers that generic formats such as XML do.
In spite of this, there is an impressive collection of pro-
grams available to support activities at many levels, from the
single-line shell script needed to search for some desired con-
tent in a collection of CIFs, to the industrial-scale activities
of major databases and publishing houses. As many exam-
ples as possible of the programs discussed in this chapter
have been collected on the IUCr web site (http://www.iucr.org/
iucr-top/cif/software). It is hoped that the contributions described
here will inspire future generations of programmers to contribute
to a growing and increasingly robust software collection to make
the use of CIFs ever easier and more fruitful.

I am immensely grateful for the assistance, cooperation and
involvement of the community of software authors who have con-
tributed to this chapter in one way or another, and to all the
programmers and developers who have been active through the
cif-developers discussion list of the IUCr (http://www.iucr.org/
iucr-top/lists/cif-developers) and in private discussions.

References
Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a

million crystal structures and rising. Acta Cryst. B58, 380–388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004).

CIF applications. XV. enCIFer: a program for viewing, editing and
visualizing CIFs. J. Appl. Cryst. 37, 335–338.

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E.,
Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P.,
Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N.,
Weissig, H., Westbrook, J. D. & Zardecki, C. (2002). The Protein Data
Bank. Acta Cryst. D58, 899–907.

Berman, H. M., Olson, W. K., Beveridge, D. L., Westbrook, J., Gelbin,
A., Demeny, T., Hsieh, S.-H., Srinivasan, A. R. & Schneider, B. (1992).
The Nucleic Acid Database: a comprehensive relational database of
three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759.

Bernstein, H. J. (1998). cif 2cif. CIF copy program. http://www.iucr.org/
iucr-top/cif/software/ciftbx/cif 2cif.src/.

Bernstein, H. J. & Hall, S. R. (1998). CIF applications. VII. CYCLOPS2:
extending the validation of CIF data names. J. Appl. Cryst. 31, 278–
281.

Bluhm, W. (2000). STAR (CIF) parser. http://pdb.sdsc.edu/STAR/
index.html.

Brown, I. D., Zabobonin, A. & Holt, B. (2004). beCIF. Browser and editor
for CIF. Private communication.

Collaborative Computational Project, Number 4 (1994). The CCP4 suite:
programs for protein crystallography. Acta Cryst. D50, 760–763.

Edgington, P. R. (1997). HICCuP: High-Integrity CIF Checking using
Python. Cambridge: Cambridge Crystallographic Data Centre.

Greer, D. S. (2000). Macromolecular structure RFP response.
Revised submission. http://openmms.sdsc.edu/OpenMMS-1.5.1 Std/
openmms/docs/specs/lifesci 00-11-01.pdf.

Greer, D. S., Westbrook, J. D. & Bourne, P. E. (2002). An ontology driven
architecture for derived representations of macromolecular structure.
Bioinformatics, 18, 1280–1281.

Hall, S. R. (1993). CIF applications. III. CYCLOPS: for validating CIF
data names. J. Appl. Cryst. 26, 480–481.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). The Crystallographic
Information File (CIF): a new standard archive file for crystallogra-
phy. Acta Cryst. A47, 655–685.

Hall, S. R. & Bernstein, H. J. (1996). CIF applications. V. CIFtbx2:
extended tool box for manipulating CIFs. J. Appl. Cryst. 29, 598–603.

Hall, S. R. & Sievers, R. (1993). CIF applications. I. QUASAR: for
extracting data from a CIF. J. Appl. Cryst. 26, 469–473.

Hester, J. R. (2006). A validating CIF parser: PyCIFRW. J. Appl. Cryst.
39, 621–625.

Hester, J. R. & Okamura, F. P. (1998). CIF applications. X. Automatic
construction of CIF input functions: CifSieve. J. Appl. Cryst. 31, 965–
968.

Knuth, D. E. (1986). The TEXbook. Computers and Typesetting, Vol. A.
Reading, MA: Addison-Wesley.

McMahon, B. (1993). ciftex: translation utility from CIF to TEX.
ftp://ftp.iucr.org/pub/ciftex.tar.Z.

McMahon, B. (1998). vcif: a utility to validate the syntax
of a Crystallographic Information File. http://www.iucr.org/
iucr-top/cif/software/vcif/index.html.

OMG (2001). Life Sciences Research Domain Task Force.
http://www.omg.org/lsr/.

Ousterhout, J. K. (1994). Tcl and the Tk toolkit. Reading, MA: Addison-
Wesley.

Painter, J. & Merritt, E. A. (2004). mmLib Python toolkit for manipulat-
ing annotated structural models of biological macromolecules. J. Appl.
Cryst. 37, 174–178.

Patel, A. J. (2002). Yapps: Yet Another Python Parser System.
http://theory.stanford.edu/∼amitp/yapps/.

Rossum, G. van (1991). Python programming language. http://
www.python.org.

Spadaccini, N. & Hall, S. R. (1994). Star Base: accessing STAR File data.
J. Chem. Inf. Comput. Sci. 34, 509–516.

Stampf, D. R. (1994). ZINC: galvanizing CIF to work with UNIX.
Brookhaven: Protein Data Bank.

Toby, B. H. (2003). CIF applications. XIII. CIFEDIT, a program for view-
ing and editing CIFs. J. Appl. Cryst. 36, 1288–1289.

Tosic, O. & Westbrook, J. D. (2000). CIFParse. A library of access
tools for mmCIF. Reference guide. http://sw-tools.pdb.org/apps/
CIFPARSE-OBJ/cifparse/index.html.

Wall, L., Schwartz, R. L., Christiansen, T. & Orwant, J. (2000). Program-
ming Perl, 3rd ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc.

Westbrook, J. D. & Bourne, P. E. (2000). STAR/mmCIF: an ontology for
macromolecular structure. Bioinformatics, 16, 159–168.

Westbrook, J. & Fitzgerald, P. (2003). The PDB format, mmCIF for-
mats and other data formats. Structural bioinformatics, edited by P. E.
Bourne & H. Weissig, pp. 161–179. Hoboken, NJ: John Wiley & Sons,
Inc.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). CIF applica-
tions. VI. CIFLIB: an application program interface to CIF dictionaries
and data files. J. Appl. Cryst. 30, 79–83.

Westrip, S. P. (2004). printCIF for Word. http://www.iucr.org/
iucr-top/cif/software/printCIFforWord/index.html.

Winn, M. (1998). cif.el: an Emacs mode for CIF. Daresbury Laboratory,
Warrington, England.

525 references

http://it.iucr.org/Ga/ch5o3v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

