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5.5. The use of mmCIF architecture for PDB data management

BY J. D. WESTBROOK, H. YANG, Z. FENG AND H. M. BERMAN

5.5.1. Introduction

The Protein Data Bank (PDB) is an archive for macromolecular
structures (Bernstein et al., 1977; Berman et al., 2000) and a major
component of a global resource for macromolecular structural sci-
ence (Berman et al., 2003). The scale of its data handling opera-
tions is large, and depends on the effective exploitation of the latest
developments in the science and technology of informatics. A sig-
nificant component of its data storage and retrieval strategy is the
management of structural data in mmCIF format with appropriate
extensions.

Over its 30-year history, the PDB archive has grown from seven
entries in 1973 to a collection of over 30 000 structures as of May
2005. The growth in the size of the archive has been accompa-
nied by increases in both data content and in the structural com-
plexity of individual entries. As the PDB has grown, there has
been a significant broadening of its user community. In response
to this change, the role of the PDB has expanded from being sim-
ply a provider of structure data files to providing a key information
resource for the structural biology community.

Looking forward, an acceleration in the growth of the PDB
archive is anticipated owing to developments in high-throughput
structural determination methodologies and worldwide structural
genomics efforts. To support the continued growth and evolution
of the PDB archive, a framework is required that supports automa-
tion and scalability, and that can adapt to changes in both data
content and delivery technology.

At the core of the PDB informatics infrastructure is an ontology
of data definitions which electronically encode domain informa-
tion in the form of precise definitions, examples and controlled
vocabularies. In addition to domain information, data definitions
also encode information such as data type, data relationships,
range restrictions and presentation units.

The software-accessible PDB exchange data dictionary
(Appendix 3.6.2) is the key part of the PDB informatics infrastruc-
ture. The exchange dictionary is an extension of the macromolec-
ular Crystallographic Information File (mmCIF) data dictionary
(Bourne et al., 1997). The dictionary provides the foundation for
software tools which exchange and validate data, create and load
databases, translate data formats, and serve application program
interfaces. The components of the informatics infrastructure devel-
oped by the PDB are being used to build a data pipeline to support
high-throughput structure determination.

5.5.2. Representing macromolecular structure data

Macromolecular structure data have historically been represented
in a simple record-oriented format developed by the PDB; this for-
mat has been widely used in structural and computational biology.
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Fig. 5.5.2.1. Excerpt of records from a PDB data file.

While this PDB format has in general been adequate for rep-
resenting coordinate data, it has proved less satisfactory for the
description of related information such as chemical and biological
features and experimental methodology. To provide a more rigor-
ous data encoding that includes all of this related information, the
Protein Data Bank has in recent years adopted a comprehensive
ontology of structure and experiment based on the content of the
mmCIF data dictionary.

5.5.2.1. PDB format

For the past 30 years, the PDB has served as the single central
repository for macromolecular structure data. The data format used
to store archival entries in the PDB is a column-oriented data for-
mat resembling many data formats developed to accommodate the
limitations of paper punched-card technology (see Chapter 1.1).
An example of the data format is shown in Fig. 5.5.2.1.

Many of the data records in this format are prefixed with a
record tag (e.g. CRYST1, ATOM) followed by individual items
of data. The specifications for the records in this data format are
described informally by Callaway et al. (1996). In addition to
the labelled records as in Fig. 5.5.2.1, many data records in the
PDB format are presented as unstructured or only semi-structured
remark records.

5.5.2.2. Ontology representation of macromolecular structure
data

In 1998, the Research Collaboratory for Structural Bioinformat-
ics (RCSB) assumed the management responsibilities for the PDB.
One important outcome was the change in the underlying data
representation used to process PDB data. The PDB now collects
and processes data using a data representation based on a com-
prehensive ontology of macromolecular structure and experiment:
the PDB exchange data dictionary. This representation is an exten-
sion of the mmCIF data dictionary, now the standard data repre-
sentation for experimentally determined three-dimensional macro-
molecular structures. The dictionary and data files based on this
data ontology (Westbrook & Bourne, 2000) are expressed using
Self-defining Text Archival and Retrieval (STAR) syntax (Chapter
2.1).

Although the mmCIF dictionary was developed within the crys-
tallographic community, the metadata model employed by mmCIF
is quite general and has been adopted by other application domains
including NMR, molecular modelling and molecular recognition
(dictionaries are available at http://mmcif.pdb.org/). Within the
crystallographic community, metadata dictionaries have also been
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developed for other types of diffraction experiments, electron-
microscopy data and for the general description of image data. The
metadata concepts and tools that have been developed to support
mmCIF are sufficiently general that they may be applied to the
description of data in virtually any application.

The demands of structural genomics projects have driven the
development of extensions to capture an increased level of experi-
mental detail. These are available at http://mmcif.pdb.org/. Exten-
sions have also been introduced to describe NMR, cryo-electron
microscopy and all aspects of protein production. The ability
to rapidly add extensions and incorporate these into the PDB
data-processing system is an important feature for supporting
the rapidly evolving technologies associated with high-throughput
structure determinations.

The mmCIF metadata architecture is built from three levels as
illustrated in Fig. 5.5.2.2 (see also Chapter 2.6). Individual data
files are described at the top level (e.g. Fig. 5.5.2.2a). The con-
tents of these data files are defined by a data dictionary (e.g. Fig.
5.5.2.2b) in the next lower level (see Chapters 3.6 and 4.5). The
attributes used in this data dictionary to build data definitions are
in turn defined in the dictionary description language (DDL) (e.g.
Fig. 5.5.2.2¢) in the lowest level (see Chapters 2.6 and 4.10).

The major syntactical constructs used by mmCIF are illus-
trated in the data file example of Fig. 5.5.2.2(a). Each data item
or group of data items is preceded by an identifying keyword.
Groups of related data items are organized into data categories.
Two categories, CELL and ENTITY POLY_ SEQ, are shown in the
example. CELL contains an individual instance describing a sin-
gle set of crystallographic cell constants. ENTITY_POLY_SEQ con-
tains a loop_ (i.e. table) of instances describing a polymer residue
sequence. Essentially all mmCIF data are described as a set of tab-
ular data structures.

Each mmCIF data item is defined in a data dictionary. Data
definitions are given between save-frame delimiters (i.e. save );
apart from this, the data definitions share the same simple syn-
tax as used in data files. An example definition for a crystallo-
graphic cell constant is shown in Fig. 5.5.2.2(b). Many features of
the cell constant are described in this definition, including data
type, range restrictions, units of expression, dependent quanti-
ties, related definitions, necessity and related precision estimate.
Although not shown in this example, dictionary definitions can
also include parent—child relationships that have important con-
sequences in maintaining data consistency.

The attributes of each data definition are defined in the DDL dic-
tionary. Fig. 5.5.2.2(c) shows example DDL definitions describ-
ing data types. DDL definitions have the same syntax as defi-
nitions used in the data dictionary. Because the attributes of the
DDL are also used in DDL definitions, this metadata architecture
is described as self-defining.

The RCSB PDB distributes parsing tools that support all three
levels of this metadata architecture (http://sw-tools.pdb.org/). The
CIFPARSE_OBJ package (Tosic & Westbrook, 2000) provides
high-level methods to read, write, validate and manage data from
data files, dictionaries and DDLs. Data files can be validated
relative to an input data dictionary, and dictionary files can be
validated relative to an input DDL. CIFPARSE_OBJ stores infor-
mation in a collection of table objects. Access methods are pro-
vided to search and manipulate the table objects. A companion
package, CIFOBJ (Schirripa & Westbrook, 1996), provides an
alternative representation of dictionary and DDL data. CIFOBJ
organizes dictionary information into a collection of category and
item-level objects. Access methods are provided for all dictionary
attributes.
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_cell.entry id W1QQQ
_cell.length a 129.230
_cell.length b 60.440
_cell.length ¢ 56.630
_cell.angle alpha 90.00
_cell.angle_beta 119.05
_cell.angle gamma 90.00
_cell.Z_PDB 4
loop_
_entity poly seq.entity id

_entity poly seqg.num
_entity poly seq.mon_id

1 1 ASP 1 2 ILE

1 3 VAL 1 4 LEU

1 5 THR 1 6 GLN

1 7 SER 1 8 PRO

1 9 ALA 1 10 SER
(@)

save_ cell.length a
_item description.description

; Unit-cell length a corresponding to the structure
reported.

i
_item.name ’_cell.length a’
_item.category_ id cell
_item.mandatory code no
_item aliases.alias name ’_cell length a’
_item aliases.dictionary cif core.dic
_item aliases.version 2.0.1

loop_
_item dependent.dependent name
’_cell.length b’
’_cell.length c’
loop_
_item range.maximum
_item range.minimum 0.0
0.0 0.0
’_cell.length a esd’
associated esd
cell length

_item related.related name
_item related.function_code
_item sub category.id

_item type.code float
_item type conditions.code esd
_item units.code angstroms

B (b)

save ITEM TYPE LIST
_category.description
Attributes which define each type code.

_category.id
_category.mandatory code
_category key.name

loop_
_category group.id

item type list
no
’_item type list.code’

’ddl_group’
‘item group’
save_

save_ item type list.code
_item description.description
The codes specifying the nature of the data value.

loop_
_item.name
_item.category id
_item.mandatory code

’_item type list.code’ item type list yes
' _item type.code’ item type yes
_item type.code code

_item linked.child name
_item linked.parent_ name

’ _item type.code’
’_item type list.code’

save_

()

Fig. 5.5.2.2. Files at different levels of the mmCIF metadata architecture.
(a) mmCIF data file excerpt. (b) Example mmCIF data dictionary definition.
(c) Example DDL dictionary attribute definition.
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5.5.2.3. Supporting other data formats and data delivery
methods

One of the greatest benefits of a dictionary-based informatics
infrastructure is the flexibility that it provides in supporting alter-
native data formats and delivery methods. Because the data and all
of their defining attributes are electronically encoded, translation
between data and dictionary formats can be achieved using light-
weight software filters without loss of any information.

XML provides a particularly good example of the ease with
which data can be converted to and from the mmCIF format.
XML translations of mmCIF data files are currently provided on
the Worldwide PDB ftp site (ftp://ftp.wwpdb.org/pub/pdb/data/
structures/divided/XML/). These XML files use mmCIF dictio-
nary data-item names as XML tags. These files were created
by a translation tool (http://sw-tools.pdb.org/apps/MMCIF-XML-
UTIL/) that translates mmCIF data files to XML in compliance
with an XML schema. The XML schema is similarly software-
translated from the PDB exchange data dictionary.

Other delivery methods such as Corba (http://www.omg.org/cgi-
bin/docifesci/00-02-02) do not require a data format, as data are
exchanged using an application program interface (API). A Corba
API for macromolecular structure (Greer et al., 2002) based on
the content of the mmCIF data dictionary has been approved by
the Object Management Group (OMG). Software tools supporting
this Corba API (OpenMMS, http://openmms.sdsc.edu, and FILM,
http://sw-tools.pdb.org/apps/FILM) take full advantage of the data
dictionary in building the interface definitions and supporting
server on which the API is based (see also Section 5.3.8.2).

5.5.3. Integrated data-processing system: overview

The RCSB PDB data-processing system has been designed to take
full advantage of the features of the mmCIF metadata framework.
The AutoDep Input Tool (ADIT) is an integrated data-processing
system developed to support deposition, data processing and anno-
tation of three-dimensional macromolecular structure data.

This system, which is outlined in Fig. 5.5.3.1, accepts exper-
imental and structural data from a user for deposition. Data are
input in the form of data files or through a web-based form inter-
face. The input data can be validated in a very basic sense for syn-
tax compliance and internal consistency. Other computational val-
idation can also be applied, including checking the input structure
data against a variety of community standard geometrical criteria
and comparing the input experimental data with the derived struc-
ture model. The suite of validation software used within ADIT is
distributed separately (http://sw-tools.pdb.org/apps/VAL/). All of
this validation information is returned to the user as a collection of
HTML reports.

In addition to providing data-validation reports, ADIT also
encodes data in archival data files and loads data into a rela-
tional database. The loading of data into the relational database
is aided by an expert annotator. The ADIT system customizes its
behaviour according to the user’s requirements. One important dis-
tinction is between the behaviour of the interface provided for

User-provided
structure and
experimental data

Archival
data files

ADIT

Relational
database

Data-validation
reports

Fig. 5.5.3.1. Functional diagram of the ADIT system.
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depositing data and that of the interface used for annotating the
data. The depositor is focused only on data collection and provides
the simplest possible presentation of the information to be input.
The annotator sees the detail of all possible data items as well as
the full functionality of the supporting data-processing software
and database system.

Although the ADIT system was originally developed to sup-
port the centralized data deposition and annotation of macromolec-
ular structure data, it is not limited to these particular applica-
tions. Because the architecture of the ADIT system derives the full
scope of information to be processed from a data dictionary, the
system can transparently provide data input and processing func-
tionality for any content domain. This feature has been exploited
in building a data-input tool for the BioSync project (Kuller et
al., 2002). The ADIT system can also be configured in work-
station mode to provide single-user data collection and process-
ing functionality. This version of the ADIT system as well as the
supporting mmCIF parsing and data-management tools are cur-
rently distributed by the RCSB PDB under an open-source licence
(http://sw-tools.pdb.org/apps/ADIT).

5.5.3.1. ADIT: functional description

The basic functions of the ADIT deposition system are shown
in Fig. 5.5.3.2. Users interact with the ADIT system through a
web server. The CGI components of the ADIT system (that is,
functional software components interacting with web input data
through the Common Gateway Interface protocol) dynamically
build the HTML that provides the system user interface. These
CGI components are currently implemented as compiled binaries
from C++ source code.

User data can be provided in the form of data files or as key-
board input. Input files can be accepted in a variety of formats.
ADIT uses a collection of format filters to convert input data to
the data specification defined in a persistent data dictionary. Data
in the form of data files are typically loaded first. Any input data
that are not included in uploaded files can be keyed in by the user.
ADIT builds a set of HTML forms for each category of data to be
input. At any point during an input session, a user may choose to
view or deposit the input data. Users who are depositing data may
also use the data-validation services through the ADIT interface.

Comprehensive data ontologies like the PDB exchange dictio-
nary contain vast numbers of data definitions. A data-input appli-
cation may only need to access a small fraction of these definitions
at any point. To address the problem of selecting only the relevant
set of input data items from a data dictionary ADIT uses a view
database. In addition to defining the scope of the data items to be
edited by the ADIT application, an ADIT data view also stores

Format
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Validation
applications

Persistent
data
dictionary,

Dictional
Data dictionaries

format translation and validation

)

server

omponents

C

-G

View
database

Fig. 5.5.3.2. Schematic diagram of ADIT editing,
functions.
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Fig. 5.5.3.3. Example ADIT data-input screen.

presentation details that are used in building the HTML input
forms. An important use of the data view is to provide a simple
and intuitive presentation of information for novice users which
disguises the complex details of a data dictionary.

Fig. 5.5.3.3 shows an example ADIT editing screen for the crys-
tallographic unit cell. The data dictionary category containing this
information is named CELL, and the length of the first cell axis
is defined in the dictionary as cell.length a (Fig. 5.5.2.2b). In
this case, the data view has substituted Unit Cell and Length a for
the dictionary data names. Although this example is simple, some
dictionary data names are as long as 75 characters, and in these
instances the ability to display a simpler name is essential.

Precise dictionary definitions and examples obtained from the
data dictionary are accessible from the ADIT interface through
buttons next to each data item. ADIT makes full use of the dic-
tionary specification in data-input operations. Data items defined
to assume only specific values have pulldown menus or selection
boxes. Data type and range restrictions are checked when data
are input and diagnostics are displayed to the user if errors are
detected.

For performance reasons, the data dictionary is converted from
its tabular text structure to an object representation using CIFOBJ.
The class supporting the object representation provides efficient
access functions to all of the data dictionary attributes. A dictio-
nary loader is used to check the consistency of the data dictionary
and to load the object representation from the text form of the data
dictionary.

Any dictionary that complies with the dictionary description
language (DDL2) can be loaded and used by ADIT. All ADIT
software components gain their knowledge of the input data from
the data dictionary and any associated data views. Consequently,
ADIT can be tailored for use in virtually any data-input and data-
processing application.

5.5.3.2. Generalized database support

In addition to the data editing and processing functions,
ADIT also supports a versatile database loader (mmCIF Loader;
http://sw-tools.pdb.org/apps/MMCIF-LOADER) that builds data-
base schemata and extracts the processed data required to load
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database instances. The relation of the database loader to the cen-
tral components of the ADIT system is shown in Fig. 5.5.3.4.

Schemata are defined in a metadata repository that is accessed
by the loader application. In the simplest case, a schema can be
constructed that is modelled directly from the data dictionary.
Since the data model underlying the dictionary description lan-
guage used to build ADIT data dictionaries is essentially relational,
mapping a data dictionary specification to a relational schema is
straightforward.

In other cases, a mapping is required between the target schema
and the data dictionary specification. This mapping is encoded
in the schema metadata repository. The database loader uses this
mapping information to extract items from data files and translate
these data into a form that can be loaded into the target database
schema. The definition of the mapping operation can include:
selection operations with equijoin constraints (e.g. the value of
_entity.type where entity.id = 1), aggregation (e.g. count,
sum, average), collapse (e.g. vector to string), type conversions and
existence tests.

Schema definitions are converted by the database loader into
SQL instructions that create the defined tables and indices. Load-
able data are produced either as SQL insert/update instructions or
in the more efficient table copy formats used by popular database
engines (i.e. DB2, Sybase, Oracle and MySQL). Loadable data can
also be produced in XML.

5.5.3.3. Building a structure-determination data pipeline

One goal of high-throughput structural genomics is the auto-
matic capture of all the details of each step in the process of
structure determination. Fig. 5.5.3.5 shows a simplified structure-
determination data pipeline. The essential details of each pipeline
step are extracted and later assembled to make a data file for
PDB deposition. The RCSB PDB data-processing infrastructure
has been developed in anticipation of a data pipeline in which
automated deposition would be the terminal step. The dictionary
technology and software tools developed by the RCSB PDB to
process and manage mmCIF data can be reused to provide the
data-handling operations required to build the pipeline.

Dictionary definitions have been carefully developed to describe
the details of each step in the structure-determination pipeline.
These data items are typically accessible in electronic form after
each program step. The information is either exported directly
in mmCIF format or is printed in a program output file. To
deal with the latter case, a utility program, PDB_EXTRACT
(http://sw-tools.pdb.org/apps/PDB_EXTRACT), has been devel-
oped to parse program output files and extract key data values. In
either case, the results of this incremental extraction of data from
each program step must be merged to build a complete mmCIF
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Fig. 5.5.3.5. Schematic diagram of a structure-determination data pipeline.
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data file ready for deposition. The PDB_EXTRACT program also
carrys out this merging operation.

Some steps in the structure-determination pipeline may not be
driven by software. For instance, the details of protein production
may be held in laboratory databases or within laboratory note-
books. A version of ADIT with a data view including all of the
structural genomics data extensions has been created for entering
these data. This ADIT tool can also be used to validate and check
the completeness of the final data file.

5.5.4. Access

All of the software tools and libraries described in this chap-
ter are distributed with full source under an open-source licence.
Applications are also distributed in binary form for Intel/Linux,
Sun/Solaris, SGI/IRIX and Dec Alpha platforms.

The RCSB/PDB is operated by Rutgers, The State University of
New Jersey; the San Diego Supercomputer Center at the University
of California, San Diego; and the Center for Advanced Research
in Biotechnology of the National Institute of Standards and Tech-
nology. RCSB/PDB is supported by funds from the National Sci-
ence Foundation (NSF), the National Institute of General Med-
ical Sciences (NIGMS), the Department of Energy (DOE), the
National Library of Medicine (NLM), the National Cancer Insti-
tute (NCI), the National Center for Research Resources (NCRR),
the National Institute of Biomedical Imaging and Bioengineering
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(NIBIB), and the National Institute of Neurological Disorders and
Stroke (NINDS).
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