Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 1.1, pp. 2-23

Chapter 1.1. Overview and principles of powder diffraction

R. E. Dinnebiera* and S. J. L. Billingeb,c

aMax-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany,bDepartment of Applied Physics and Applied Mathematics, Columbia University, 500 West 120th Street, Room 200 Mudd, MC 4701, New York, NY 10027, USA, and cCondensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973–5000, USA
Correspondence e-mail:


Billinge, S. J. L., Davies, P. K., Egami, T. & Catlow, C. R. A. (1991). Deviations from planarity of copper-oxygen sheet in Ca0.85Sr0.15CuO2. Phys. Rev. B, 43, 10340–10352.Google Scholar
Bragg, W. L. (1913). The diffraction of short electromagnetic waves by a crystal. Proc. Camb. Philos. Soc. 17, 43–57.Google Scholar
Bruker-AXS (2007). TOPAS version 4.1. Bruker-AXS, Karlsruhe, Germany.Google Scholar
Burkel, E. (1991). Inelastic Scattering of X-rays With Very High Energy Resolution. Springer Tracts in Modern Physics. Amsterdam: Springer-Verlag.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Compton, A. H. (1923). A quantum theory of the scattering of X-rays by light elements. Phys. Rev. Lett. 21, 483.Google Scholar
Cooper, M. J., Mijnarends, P. E., Shiotani, N., Sakai, N. & Bansil, A. (2004). X-ray Compton Scattering. Oxford University Press.Google Scholar
Debye, P. (1912). Zur Theorie der spezifischen Wärmen. Ann. Phys. 344, 789–839.Google Scholar
Debye, P. (1915). Dispersion of Röntgen rays. Ann. Phys. 46, 809–823.Google Scholar
Debye, P. & Scherrer, P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht. Nachr. Ges. Wiss. Göttingen. 29, 1–15.Google Scholar
Dinnebier, R. E. & Billinge, S. J. L. (2008). Editors. Powder Diffraction: Theory and Practice, 1st ed. London: Royal Society of Chemistry.Google Scholar
Egami, T. & Billinge, S. J. L. (2013). Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd ed. Amsterdam: Elsevier.Google Scholar
Ewald, P. P. (1921). Das reziproke Gitter in der Strukturtheorie. Z. Kristallogr. 56, 129–156.Google Scholar
Favre-Nicolin, V. & Černý, R. (2004). Fox: Modular approach to crystal structure determination from powder diffraction. Mater. Sci. Forum, 443–444, 35–38.Google Scholar
Frandsen, B. A. & Billinge, S. J. L. (2015). Magnetic structure determination from the magnetic pair distribution function (mPDF): ground state of MnO. Acta Cryst. A71, 325–334.Google Scholar
Goodwin, A. L., Tucker, M. G., Cope, E. R., Dove, M. T. & Keen, D. A. (2005). Model-independent extraction of dynamical information from powder diffraction data. Phys. Rev. B, 72, 214304.Google Scholar
Graf, M. J., Jeong, I. K., Starr, D. L. & Heffner, R. H. (2003). Limits on phonon information extracted from neutron pair-density functions. Phys. Rev. B, 68, 064305.Google Scholar
Hull, A. W. (1917). A new method of X-ray crystal analysis. Phys. Rev. 10, 661–696.Google Scholar
Jeong, I.-K., Proffen, T., Mohiuddin-Jacobs, F. & Billinge, S. J. L. (1999). Measuring correlated atomic motion using X-ray diffraction. J. Phys. Chem. A, 103, 921–924.Google Scholar
Juhás, P., Cherba, D. M., Duxbury, P. M., Punch, W. F. & Billinge, S. J. L. (2006). Ab initio determination of solid-state nanostructure. Nature, 440, 655–658.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures, 2nd ed. New York: John Wiley.Google Scholar
Laue, M. von (1912). Eine quantitative Prüfung der Theorie für die Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsber. K. Bayer. Akad. Wiss. pp. 363–373. [Reprinted in Ann. Phys. (1913), 41, 989–1002.]Google Scholar
Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 23, 447–452.Google Scholar
Levashov, V. A., Billinge, S. J. L. & Thorpe, M. F. (2005). Density fluctuations and the pair distribution function. Phys. Rev. B, 72, 024111.Google Scholar
Masadeh, A. S., Božin, E. S., Farrow, C. L., Paglia, G., Juhás, P., Billinge, S. J. L., Karkamkar, A. & Kanatzidis, M. G. (2007). Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys. Rev. B, 76, 115413.Google Scholar
Mittemeijer, E. J. & Welzel, U. (2012). Editors. Modern Diffraction Methods. Weinheim: Wiley-VCH Verlag GmbH.Google Scholar
Paddison, J. A. M. & Goodwin, A. L. (2012). Empirical magnetic structure solution of frustrated spin systems. Phys. Rev. Lett. 108, 017204.Google Scholar
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361.Google Scholar
Petkov, V., Billinge, S. J. L., Shastri, S. D. & Himmel, B. (2000). Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy X-ray diffraction. Phys. Rev. Lett. 85, 3436–3439.Google Scholar
Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Shmueli, U. (2008). Editor. International Tables for Crystallography, Vol. B, Reciprocal Space, 3rd ed. Chichester: Wiley.Google Scholar
Squires, G. L. (1996). Introduction to the Theory of Thermal Neutron Scattering. New York: Dover Publications.Google Scholar
Stinton, G. W. & Evans, J. S. O. (2007). Parametric Rietveld refinement. J. Appl. Cryst. 40, 87–95.Google Scholar
Warren, B. E. (1990). X-ray Diffraction. New York: Dover Publications.Google Scholar