Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk
International Tables for Crystallography (2018). Vol. H, ch. 2.10, pp. 200-222

Chapter 2.10. Specimen preparation

P. S. Whitfield,a* A. Huqb and J. A. Kadukc,d,e

aEnergy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa ON K1A 0R6, Canada,bChemical and Engineering Materials Division, Spallation Neutron Source, P.O. Box 2008, MS 6475, Oak Ridge, TN 37831, USA,cDepartment of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA,dDepartment of Physics, North Central College, 131 South Loomis Street, Naperville, IL 60540, USA, and ePoly Crystallography Inc., 423 East Chicago Avenue, Naperville, IL 60540, USA
Correspondence e-mail:


Alexander, L. E. & Klug, H. P. (1948). Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixture. Anal. Chem. 20, 886–894.Google Scholar
Alexander, L., Klug, H. P. & Kummer, E. (1948). Statistical factors affecting the intensity of X-rays diffracted by crystalline powders. J. Appl. Phys. 19, 742–753.Google Scholar
Bailey, I. F., Done, R., Dreyer, J. W. & Gray, E. M. (2004). A high-temperature high-pressure gas-handling cell for neutron scattering measurements. High Press. Res. 24, 309–315.Google Scholar
Bowden, M. & Ryan, M. (2010). Absorption correction for cylindrical and annular specimens and their containers or supports. J. Appl. Cryst. 43, 693–698.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.Google Scholar
Brindley, G. W. (1945). The effect of grain or particle size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods. London Edinb. Dubl. Philos. Mag. J. Sci. 36, 347–369.Google Scholar
Buhrke, V. E., Jenkins, R. & Smith, D. K. (1998). A Practical Guide for the Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis. New York: Wiley-VCH.Google Scholar
Cline, J. P. & Snyder, R. L. (1987). The effects of extinction on X-ray powder diffraction intensities. Adv. X-ray Anal. 30, 447–456.Google Scholar
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.Google Scholar
Donnay, J. D. H. & Harker, D. (1937). A new law of crystal morphology extending the law of Bravais. Am. Mineral. 22, 446–467.Google Scholar
Friedel, G. (1907). Etudes sur la loi de Bravais. Bull. Soc. Fr. Mineral. 30, 326–455.Google Scholar
Hillier, S. (1999). Use of an air brush to spray dry samples for X-ray powder diffraction. Clay Miner. 34, 127–135.Google Scholar
Hillier, S. (2002). Spray drying for X-ray powder diffraction specimen preparation. IUCr Commission on Powder Diffraction Newsletter, 27, 7–9. .Google Scholar
Huq, A., Richardson, J. W., Maxey, E. R., Chandra, D. & Chien, W. (2007). Structural studies of Li3N using neutron powder diffraction. J. Alloys Compd. 436, 256–260.Google Scholar
International Tables for Crystallography (2006). Volume C, Mathematical, Physical and Chemical Tables, 1st online edition, edited by E. Prince. Chester: International Union of Crystalloagraphy. doi:10.1107/97809553602060000103 .Google Scholar
Järvinen, M. (1993). Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Cryst. 26, 525–531.Google Scholar
Jenkins, R. & Snyder, R. (1996). Introduction to X-ray Powder Diffractometry. New York: Wiley-Interscience.Google Scholar
Kaduk, J. A. (2009). A Rietveld tutorial – mullite. Powder Diffr. 24, 351–361.Google Scholar
Kaduk, J. A. (2013). Personal communication.Google Scholar
Klug, H. P. & Alexander, L. E. (1954). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley-Interscience.Google Scholar
Lewis, J., Schwarzenbach, D. & Flack, H. D. (1982). Electric field gradients and charge density in corundum, α-Al2O3. Acta Cryst. A38, 733–739.Google Scholar
Lobanov, N. N. & Alte de Viega, L. (1998). Analytic absorption correction factors for cylinders to an accuracy of .5%. Abstract P 2-16, 6th European Powder Diffraction Conference, Budapest, Hungary, 22–25 August. Zurich: Trans Tech Publications.Google Scholar
Ohashi, Y. (1984). Polysynthetically-twinned structures of enstatite and wollastonite. Phys. Chem. Miner. 10, 217–229.Google Scholar
Pitschke, W., Hermann, H. & Mattern, N. (1993). The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffr. 8, 74–83.Google Scholar
Raudsepp, M. (2012). Personal communication.Google Scholar
Reibenspies, J. H. & Bhuvanesh, N. (2006). Capillaries prepared from thin-walled heat-shrink poly(ethylene terephthalate) (PET) tubing for X-ray powder diffraction analysis. Powder Diffr. 21, 323–325.Google Scholar
Rowles, M. R. & Madsen, I. C. (2010). Whole-pattern profile fitting of powder diffraction data collected in parallel-beam flat-plate asymmetric reflection geometry. J. Appl. Cryst. 43, 632–634.Google Scholar
Sabine, T. M., Von Dreele, R. B. & Jørgensen, J.-E. (1988). Extinction in time-of-flight neutron powder diffractometry. Acta Cryst. A44, 374–379.Google Scholar
Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002). Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals. J. Appl. Cryst. 35, 383–400.Google Scholar
Smith, D. K. (2001). Particle statistics and whole-pattern methods in quantitative X-ray powder diffraction analysis. Powder Diffr. 16, 186–191.Google Scholar
Suortti, P. (1972). Effects of porosity and surface roughness on the X-ray intensity reflected from a powder specimen. J. Appl. Cryst. 5, 325–331.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). New software for statistical analysis of Cambridge Structural Database data. J. Appl. Cryst. 44, 882–886.Google Scholar
Toraya, H., Huang, T. C. & Wu, Y. (1993). Intensity enhancement in asymmetric diffraction with parallel-beam synchrotron radiation. J. Appl. Cryst. 26, 774–777.Google Scholar
Toraya, H. & Yoshino, J. (1994). Profiles in asymmetric diffraction with pseudo-parallel-beam geometry. J. Appl. Cryst. 27, 961–966.Google Scholar
Turner, J. F. C., Done, R., Dreyer, J., David, W. I. F. & Catlow, C. R. A. (1999). On apparatus for studying catalysts and catalytic processes using neutron scattering. Rev. Sci. Instrum. 70, 2325–2330.Google Scholar
Varga, T., Wilkinson, A. P. & Angel, R. J. (2003). Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies. Rev. Sci. Instrum. 74, 4564–4566.Google Scholar
Weber, J. K. R., Benmore, C. J., Skinner, L. B., Neuefeind, J., Tumber, S. K., Jennings, G., Santodonato, L. J., Jin, D., Du, J. & Parise, J. B. (2014). Measurements of liquid and glass structures using aerodynamic levitation and in-situ high energy X-ray and neutron scattering. J. Non-Cryst. Solids, 383, 49–51.Google Scholar
Wolff, P. M. de (1958). Particle statistics in X-ray diffractometry. Appl. Sci. Res. 7, 102–112.Google Scholar
Wolff, P. M. de, Taylor, J. M. & Parrish, W. (1959). Experimental study of effect of crystallite size statistics on X-ray diffractometer intensities. J. Appl. Phys. 30, 63–69.Google Scholar
Zachariasen, W. H. (1945). Theory of X-ray Diffraction in Crystals. New York: Dover Publications Inc.Google Scholar
Zevin, L. S. & Kimmel, G. (1995). Quantitative X-ray Diffractometry. New York: Springer-Verlag.Google Scholar