International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.1, pp. 26-50
https://doi.org/10.1107/97809553602060000936

Chapter 2.1. Instrumentation for laboratory X-ray scattering techniques

A. Kerna*

aBruker AXS, Östliche Rheinbrückenstrasse 49, Karlsruhe 76187, Germany
Correspondence e-mail: arnt.kern@bruker-axs.de

References

Bartels, W. J. (1983). Characterization of thin layers on perfect crystals with a multipurpose high resolution X-ray diffractometer. J. Vac. Sci. Technol. B, 1, 338–345.Google Scholar
Bilderback, D. H. (2003). Review of capillary X-ray optics from the 2nd International Capillary Optics Meeting. X-ray Spectrom. 32, 195–207.Google Scholar
Bohlin, H. (1920). Eine neue Anordnung für röntgenkristallographische Untersuchungen von Kristallpulver. Ann. Phys. 366, 421–439.Google Scholar
Bonse, U. & Hart, M. (1965). Tailless X-ray single crystal reflection curves obtained by multiple reflection. Appl. Phys. Lett. 7, 238–240.Google Scholar
Bowen, D. K. & Tanner, B. K. (1998). High Resolution X-ray Diffractometry and Topography. London: Taylor & Francis.Google Scholar
Brentano, J. C. M. (1924). Focussing method of crystal powder analysis by X-rays. Proc. Phys. Soc. 37, 184–193.Google Scholar
Charpak, G., Bouclier, R., Bressani, T., Favier, J. & Zupančič, Č. (1968). The use of multiwire proportional counters to select and localize charged particles. Nucl. Instrum. Methods, 62, 262–268.Google Scholar
Clearfield, A., Reibenspiess, J. & Bhuvanesh, N. (2008). Principles and Applications of Powder Diffraction. New York: Wiley.Google Scholar
Debye, P. & Scherrer, P. (1916). Interference of X-rays, employing amorphous substances. Phys. Z. 17, 277–283.Google Scholar
Durst, R. D., Diawara, Y., Khazins, D. M., Medved, S., Becker, B. L. & Thorson, T. A. (2003). Novel, photon counting X-ray detectors. Powder Diffr. 18, 103–105.Google Scholar
EN 1330–11 (2007). Non-Destructive Testing. Part 11. Terms used in X-ray Diffraction from Polycrystalline and Amorphous Materials. Brussels: European Committee for Standardization (CEN).Google Scholar
Fankuchen, I. (1937). A condensing monochromator for X-rays. Nature (London), 139, 193–194.Google Scholar
Fewster, P. F. (2003). X-ray Scattering from Semiconductors. London: Imperial College Press.Google Scholar
Friedmann, H. (1945). Geiger counter spectrometer for industrial research. Electronics, 18, 132–137.Google Scholar
Göbel, H. E. (1980). The use and accuracy of continuously scanning position-sensitive detector data in X-ray powder diffraction. Adv. X-ray Anal. 24, 123–138.Google Scholar
Guinier, A. (1937). Arrangement for obtaining intense diffraction diagrams of crystalline powders with monochromatic radiation. C. R. Acad. Sci. Paris, 204, 1115–1116.Google Scholar
Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. 10, 457–512.Google Scholar
Hart, M. (1971). Bragg-reflection X-ray optics. Rep. Prog. Phys. 34, 435–490.Google Scholar
He, B. B. (2009). Two-Dimensional X-ray Diffraction. New York: Wiley.Google Scholar
He, T., Durst, R. D., Becker, B. L., Kaercher, J. & Wachter, G. (2011). A large area X-ray imager with online linearization and noise suppression. Proc. SPIE, 8142, 81421Q.Google Scholar
Hemberg, O. E., Otendal, M. & Hertz, H. M. (2003). Liquid-metal-jet anode electron-impact X-ray source. Appl. Phys. Lett. 83, 1483–1485.Google Scholar
Hull, A. W. (1917). A new method of X-ray crystal analysis. Phys. Rev. 10, 661–696.Google Scholar
Hull, A. W. (1919). A new method of chemical analysis. J. Am. Chem. Soc. 41, 1168–1175.Google Scholar
International Tables for Crystallography (2004). Volume C, 3rd ed., edited by E. Prince. Dordrecht: Kluwer Academic Publishers.Google Scholar
Jenkins, R. & Snyder, B. (1996). Introduction to X-ray Powder Diffractometry. New York: Wiley.Google Scholar
Johann, H. H. (1931). Die Erzeugung lichtstarker Röntgenspektren mit Hilfe von Konkavkristallen. Z. Phys. 69, 185–206.Google Scholar
Johannson, T. (1933). Über ein neuartiges, genau fokussierendes Röntgenspektrometer. Z. Phys. 82, 507–528.Google Scholar
Khazins, D. M., Becker, B. L., Diawara, Y., Durst, R. D., He, B. B., Medved, S. A., Sedov, V. & Thorson, T. A. (2004). A parallel-plate resistive-anode gaseous detector for X-ray imaging. IEEE Trans. Nucl. Sci. 51, 943–947.Google Scholar
Kirkpatrick, P. & Baez, A. V. (1948). Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. New York: Wiley.Google Scholar
Kumakhov, M. A. & Komarov, F. F. (1990). Multiple reflection from surface X-ray optics. Phys. Rep. 191, 289–350.Google Scholar
Le Galley, D. P. (1935). A type of Geiger–Müller counter suitable for the measurement of diffracted X-rays. Rev. Sci. Instrum. 6, 279–283.Google Scholar
Lindemann, R. & Trost, A. (1940). Das Interferenz-Zählrohr als Hilfsmittel der Feinstrukturforschung mit Röntgenstrahlen. Z. Phys. 115, 456–468.Google Scholar
Montel, M. (1957). X-ray microscopy with catamegonic roof-shaped objective. In X-ray Microscopy and Microradiography, pp. 177–185. New York: Academic Press.Google Scholar
Paganin, D. M. (2006). Coherent X-ray Optics. Oxford University Press.Google Scholar
Parrish, W. (1949). X-ray powder diffraction analysis: film and Geiger counter techniques. Science, 110, 368–371.Google Scholar
Pecharsky, V. K. & Zavalij, P. Y. (2009). Fundamentals of Powder Diffraction and Structural Characterisation of Materials, 2nd ed. New York: Springer.Google Scholar
Peiser, M. A., Rooksby, H. P. & Wilson, A. J. C. (1955). X-ray Diffraction by Polycrystalline Materials. London: Institute of Physics.Google Scholar
Sauli, F. (1977). Principle of operation of multi-wire proportional and drift chambers. CERN 77–09, May 1977.Google Scholar
Schuster, M. & Göbel, H. (1995). Parallel-beam coupling into channel-cut monochromators using curved graded multilayers. J. Phys. D Appl. Phys. 28, A270–A275.Google Scholar
Schuster, M. & Göbel, H. (1996). Application of graded multilayer optics in X-ray diffraction. Adv. X-ray Anal. 39, 57–72.Google Scholar
Seemann, H. (1919). Eine fokussierende röntgenspektroskopische Anordnung für Kristallpulver. Ann. Phys. 364, 455–464.Google Scholar
VDI/VDE Guideline 5575 Part 3 (2011). X-ray Optical Systems: Capillary X-ray Lenses. Berlin: Beuth.Google Scholar
VDI/VDE Guideline 5575 Part 4 (2011). X-ray Optical Systems: X-ray Mirrors. Total Reflection Mirrors and Multilayer Mirrors. Berlin: Beuth.Google Scholar
Wiacek, P., Dabrowski, W., Fink, J., Fiutowski, T., Krane, H.-G., Loyer, F., Schwamberger, A., Świentek, K. & Venanzi, C. (2015). Position sensitive and energy dispersive X-ray detector based on silicon strip detector technology. J. Instrumen. 10, P04002.Google Scholar