International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.2, pp. 51-65
https://doi.org/10.1107/97809553602060000937

Chapter 2.2. Synchrotron radiation and powder diffraction

A. Fitcha*

aESRF, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
Correspondence e-mail: fitch@esrf.fr

References

Als-Nielsen, J. & McMorrow, D. (2001). Elements of Modern X-ray Physics. New York: Wiley.Google Scholar
Authier, A. (2006). Dynamical theory of X-ray diffraction. International Tables for Crystallography, Vol. B, Reciprocal Space, 1st online ed., ch. 5.1. Chester: International Union of Crystallography.Google Scholar
Azároff, L. V. (1955). Polarization correction for crystal-monochromatized X-radiation. Acta Cryst. 8, 701–704.Google Scholar
Balzar, D. & Ledbetter, H. (1993). Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Cryst. 26, 97–103.Google Scholar
Barnes, P., Jupe, A. C., Colston, S. L., Jacques, S. D., Grant, A., Rathbone, T., Miller, M., Clark, S. M. & Cernik, R. J. (1998). A new three-angle energy-dispersive diffractometer. Nucl. Instrum. Methods Phys. Res. B, 134, 310–313.Google Scholar
Beaumont, J. H. & Hart, M. (1974). Multiple Bragg reflection monochromators for synchrotron X radiation. J. Phys. E Sci. Instrum. 7, 823–829.Google Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. & Shi, X. (2009). Photon counting microstrip detector for time resolved powder diffraction experiments. Nucl. Instrum. Methods Phys. Res. A, 604, 136–139.Google Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. & Shi, X. (2010). The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J. Synchrotron Rad. 17, 653–668.Google Scholar
Bilderback, D. H. (1986). The potential of cryogenic silicon and germanium X-ray monochromators for use with large synchrotron heat loads. Nucl. Instrum. Methods Phys. Res. A, 246, 434–436.Google Scholar
Boccaleri, E., Carniato, F., Croce, G., Viterbo, D., van Beek, W., Emerich, H. & Milanesio, M. (2007). In situ simultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions. J. Appl. Cryst. 40, 684–693.Google Scholar
Broennimann, Ch., Eikenberry, E. F., Henrich, B., Horisberger, R., Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M., Tomizaki, T., Toyokawa, H. & Wagner, A. (2006). The PILATUS 1m detector. J. Synchrotron Rad. 13, 120–130.Google Scholar
Cernik, R. J., Murray, P. K., Pattison, P. & Fitch, A. N. (1990). A two-circle powder diffractometer for synchrotron radiation with a closed loop encoder feedback system. J. Appl. Cryst. 23, 292–296.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Chupas, P. J., Chapman, K. W., Jennings, G., Lee, P. L. & Grey, C. P. (2007). Watching nanoparticles grow: the mechanism and kinetics for the formation of TiO2-supported platinum nanoparticles. J. Am. Chem. Soc. 129, 13822–13824.Google Scholar
Chupas, P. J., Chapman, K. W. & Lee, P. L. (2007). Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements. J. Appl. Cryst. 40, 463–470. Google Scholar
Collins, S. P., Cernik, R. J., Pattison, P., Bell, A. M. T. & Fitch, A. N. (1992). A two-circle powder diffractometer for synchrotron radiation on Station 2.3 at the SRS. Rev. Sci. Instrum. 63, 1013–1014.Google Scholar
Cousins, C. S. G. (1994). High-resolution diffraction at synchrotron sources: correction for counting losses. J. Appl. Cryst. 27, 159–163.Google Scholar
Cox, D. E., Hastings, J. B., Cardoso, L. P. & Finger, L. W. (1986). Synchrotron X-ray powder diffraction at X13A: a dedicated powder diffractometer at the National Synchrotron Light Source. Mater. Sci. Forum, 9, 1–20.Google Scholar
Cox, D. E., Hastings, J. B., Thomlinson, W. & Prewitt, C. T. (1983). Application of synchrotron radiation to high resolution powder diffraction and Rietveld refinement. Nucl. Instrum. Methods, 208, 573–578.Google Scholar
Daniels, J. E. & Drakopoulos, M. (2009). High-energy X-ray diffraction using the Pixium 4700 flat-panel detector. J. Synchrotron Rad. 16, 463–468.Google Scholar
Davaasambuu, J., Durand, P. & Techert, S. (2004). Experimental requirements for light-induced reactions in powders investigated by time-resolved X-ray diffraction. J. Synchrotron Rad. 11, 483–489.Google Scholar
David, W. I. F. & Matthewman, J. C. (1985). Profile refinement of powder diffraction patterns using the Voigt function. J. Appl. Cryst. 18, 461–466.Google Scholar
Desai, P. D. (1986). Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data, 15, 967–983.Google Scholar
Dwiggins, C. W. Jr (1983). General calculation of the polarization factor for multiple coherent scattering of unpolarized and plane-polarized X-rays. Acta Cryst. A39, 773–777.Google Scholar
Elmer, J. W., Palmer, T. A. & Specht, E. D. (2007). In situ observations of sigma phase dissolution in 2205 duplex stainless steel using synchrotron X-ray diffraction. Mat. Sci. Eng. A, 459, 151–155.Google Scholar
Evans, G. & Pettifer, R. F. (2001). CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J. Appl. Cryst. 34, 82–86.Google Scholar
Evans, J. S. O., Francis, R. J., O'Hare, D., Price, S. J., Clark, S. M., Flaherty, J., Gordon, J., Nield, A. & Tang, C. C. (1995). An apparatus for the study of the kinetics and mechanism of hydrothermal reactions by in situ energy dispersive x-ray diffraction. Rev. Sci. Instrum. 66, 2442–2445.Google Scholar
Fadenberger, K., Gunduz, I. E., Tsotsos, C., Kokonou, M., Gravani, S., Brandstetter, S., Bergamaschi, A., Schmitt, B., Mayrhofer, P. H., Doumanidis, C. C. & Rebholz, C. (2010). In situ observation of rapid reactions in nanoscale Ni–Al multilayer foils using synchrotron radiation. Appl. Phys. Lett. 97, 144101.Google Scholar
Glazov, V. M. & Pashinkin, A. S. (2001). The thermophysical properties (heat capacity and thermal expansion) of single-crystal silicon. High Temp. 39, 413–419.Google Scholar
Gozzo, F., De Caro, L., Giannini, C., Guagliardi, A., Schmitt, B. & Prodi, A. (2006). The instrumental resolution function of synchrotron radiation powder diffractometers in the presence of focusing optics. J. Appl. Cryst. 39, 347–357.Google Scholar
Gullikson, E. M. (2001). Atomic scattering factors. X-ray Data Booklet, edited by A. C. Thompson & D. Vaughan. Lawrence Berkeley National Laboratory, USA. http://xdb.lbl.gov/Section1/Sec_1-7.pdf .Google Scholar
Hastings, J. B., Thomlinson, W. & Cox, D. E. (1984). Synchrotron X-ray powder diffraction. J. Appl. Cryst. 17, 85–95.Google Scholar
Häusermann, D. & Barnes, P. (1992). Energy-dispersive diffraction with synchrotron radiation: optimization of the technique for dynamic studies of transformations. Phase Transit. 39, 99–115.Google Scholar
Hewat, A. W. (1975). Design for a conventional high-resolution neutron powder diffractometer. Nucl. Instrum. Methods, 127, 361–370.Google Scholar
Hewat, A. W. (1979). Absorption corrections for neutron diffraction. Acta Cryst. A35, 248.Google Scholar
Hodeau, J.-L., Bordet, P., Anne, M., Prat, A., Fitch, A. N., Dooryhée, E., Vaughan, G. & Freund, A. (1998). Nine-crystal multianalyzer stage for high-resolution powder diffraction between 6 keV and 40 keV. Proc. SPIE, 3448, 353–361.Google Scholar
Honkimäki, V. & Suortti, P. (2007). Energy-dispersive diffraction with synchrotron radiation and a germanium detector. J. Synchrotron Rad. 14, 331–338.Google Scholar
Hubbell, J. H. (1982). Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33, 1269–1290.Google Scholar
Ida, T., Hibino, H. & Toraya, H. (2001). Peak profile function for synchrotron X-ray diffractometry. J. Appl. Cryst. 34, 144–151.Google Scholar
Ida, T., Hibino, H. & Toraya, H. (2003). Deconvolution of instrumental aberrations for synchrotron powder X-ray diffractometry. J. Appl. Cryst. 36, 181–187.Google Scholar
Kim, K.-J. (2001). Characteristics of synchrotron radiation. X-ray Data Booklet, edited by A. C. Thompson & D. Vaughan. Lawrence Berkeley National Laboratory, USA. http://xdb.lbl.gov/Section2/Sec_2-1.html .Google Scholar
Kirkpatrick, P. & Baez, A. V. (1948). Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774.Google Scholar
Koopmans, K. & Rieck, G. D. (1968). International Tables for X-ray Crystallography, Vol. III, edited by C. H. MacGillavry & G. D. Rieck, pp. 194–195. Birmingham: Kynoch Press.Google Scholar
Korsunsky, A. M., Song, X., Hofmann, F., Abbey, B., Xie, M., Connolley, T., Reinhard, C. R. C., Atwood, R. C., Connor, L. & Drakopoulos, M. (2010). Polycrystal deformation analysis by high energy synchrotron X-ray diffraction on the I12 JEEP beamline at Diamond Light Source. Mater. Lett. 64, 1724–1727.Google Scholar
Labiche, J.-C., Mathon, O., Pascarelli, S., Newton, M. A., Ferre, G. G., Curfs, C., Vaughan, G., Homs, A. & Carreiras, D. F. (2007). The fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended X-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78, 091301–1–11.Google Scholar
Langford, J. I. (1978). A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Cryst. 11, 10–14.Google Scholar
Laundy, D. & Collins, S. (2003). Counting statistics of X-ray detectors at high counting rates. J. Synchrotron Rad. 10, 214–218.Google Scholar
Lee, J. H., Aydiner, C. C., Almer, J., Bernier, J., Chapman, K. W., Chupas, P. J., Haeffner, D., Kump, K., Lee, P. L., Lienert, U., Miceli, A. & Vera, G. (2008). Synchrotron applications of an amorphous silicon flat-panel detector. J. Synchrotron Rad. 15, 477–488.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). A twelve-analyzer detector system for high-resolution powder diffraction. J. Synchrotron Rad. 15, 427–432.Google Scholar
Lengeler, B., Schroer, C., Tümmler, J., Benner, B., Richwin, M., Snigirev, A., Snigireva, I. & Drakopoulos, M. (1999). Imaging by parabolic refractive lenses in the hard X-ray range. J. Synchrotron Rad. 6, 1153–1167.Google Scholar
Lipson, H. (1967). International Tables for X-ray Crystallography, Vol. II, edited by J. S. Kasper & K. Lonsdale, pp. 291–292. Birmingham: Kynoch Press.Google Scholar
Malard, B., Pilch, J., Sittner, P., Delville, R. & Curfs, C. (2011). In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires. Acta Mater. 59, 1542–1556.Google Scholar
Margaritondo, G. (1988). Introduction to Synchrotron Radiation. Oxford University Press.Google Scholar
Masson, O., Dooryhée, E. & Fitch, A. N. (2003). Instrument line-profile synthesis in high-resolution synchrotron powder diffraction. J. Appl. Cryst. 36, 286–294.Google Scholar
Milledge, H. J. (1968). International Tables for X-ray Crystallography, Volume III, Physical and Chemical Tables, edited by C. H. MacGillavry, G. D. Rieck & K. Lonsdale, pp. 175–192. Birmingham: Kynoch Press.Google Scholar
Mills, D. M., Helliwell, J. R., Kvick, Å., Ohta, T., Robinson, I. A. & Authier, A. (2005). Report of the Working Group on Synchrotron Radiation Nomenclature - brightness, spectral brightness or brilliance? J. Synchrotron Rad. 12, 385.Google Scholar
Newton, M. A., Di Michiel, M., Kubacka, A. & Fernández-García, M. (2010). Combining time-resolved hard X-ray diffraction and diffuse reflectance infrared spectroscopy to illuminate CO dissociation and transient carbon storage by supported Pd nanoparticles during CO/NO cycling. J. Am. Chem. Soc. 132, 4540–4541.Google Scholar
Newton, M. A. & van Beek, W. (2010). Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem. Soc. Rev. 39, 4845–4863.Google Scholar
Palmer, T. A., Elmer, J. W. & Babu, S. S. (2004). Observation of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction. Mater. Sci. Eng. A, 374, 307–321.Google Scholar
Parrish, W. (1988). Advances in synchrotron X-ray polycrystalline diffraction. Aust. J. Phys. 41, 101–112.Google Scholar
Parrish, W. & Hart, M. (1987). Advantages of synchrotron radiation for polycrystalline diffractometry. Z. Kristallogr. 179, 161–173.Google Scholar
Parrish, W., Hart, M., Erickson, C. G., Masciocchi, N. & Huang, T. C. (1986). Instrumentation for synchrotron X-ray powder diffractometry. Adv. X-ray Anal. 29, 243–250.Google Scholar
Pennartz, P. U., Löchner, U., Fuess, H. & Wroblewski, T. (1992). Powder diffraction in the range of milliseconds. J. Appl. Cryst. 25, 571–577.Google Scholar
Rijssenbeek, J., Gao, Y., Zhong, Z., Croft, M., Jisrawi, N., Ignatov, A. & Tsakalakos, T. (2011). In situ X-ray diffraction of prototype sodium metal halide cells: time and space electrochemical profiling. J. Power Sources, 196, 2332–2339.Google Scholar
Rowles, M. R., Styles, M. J., Madsen, I. C., Scarlett, N. V. Y., McGregor, K., Riley, D. P., Snook, G. A., Urban, A. J., Connolley, T. & Reinhard, C. (2012). Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction. J. Appl. Cryst. 45, 28–37.Google Scholar
Sabine, T. M. (1987a). The N-crystal spectrometer. J. Appl. Cryst. 20, 23–27.Google Scholar
Sabine, T. M. (1987b). A powder diffractometer for a synchrotron source. J. Appl. Cryst. 20, 173–178.Google Scholar
Sabine, T. M., Hunter, B. A., Sabine, W. R. & Ball, C. J. (1998). Analytical expressions for the transmission factor and peak shift in absorbing cylindrical specimens. J. Appl. Cryst. 31, 47–51.Google Scholar
Sasaki, S. (1989). Numerical Tables of Anomalous Scattering Factors Calculated by the Cromer and Liberman Method. KEK Report, 88–14, 1–136.Google Scholar
Scarlett, N. V. Y., Madsen, I. C., Evans, J. S. O., Coelho, A. A., McGregor, K., Rowles, M., Lanyon, M. R. & Urban, A. J. (2009). Energy-dispersive diffraction studies of inert anodes. J. Appl. Cryst. 42, 502–512.Google Scholar
Seltzer, S. M. (1993). Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Radiat. Res. 136, 147–170.Google Scholar
Snigirev, A. A., Filseth, B., Elleaume, P., Klocke, Th., Kohn, V., Lengeler, B., Snigireva, I., Souvorov, A. & Tuemmler, J. (1997). Refractive lenses for high-energy X-ray focusing. Proc. SPIE, 3151, 164–170.Google Scholar
Snigirev, A., Kohn, V., Snigireva, I., Souvorov, A. & Lengeler, B. (1998). Focusing high-energy X rays by compound refractive lenses. Appl. Opt. 37, 653–662.Google Scholar
Spiller, E. (2000). X-ray optics. Adv. X-ray Anal. 42, 297–307.Google Scholar
Techert, S. & Zachariasse, K. A. (2004). Structure determination of the intramolecular charge transfer state in crystalline 4-(diisopropyl­amino)benzonitrile from picosecond X-ray diffraction. J. Am. Chem. Soc. 126, 5593–5600.Google Scholar
Terasaki, H. & Komizo, Y. (2011). Diffusional and displacive transformation behaviour in low carbon-low alloy steels studied by a hybrid in situ observation system. Scr. Mater. 64, 29–32.Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.Google Scholar
Vaughan, G. B. M., Wright, J. P., Bytchkov, A., Rossat, M., Gleyzolle, H., Snigireva, I. & Snigirev, A. (2011). X-ray transfocators: focusing devices based on compound refractive lenses. J. Synchrotron Rad. 18, 125–133.Google Scholar
Walton, R. I. & O'Hare, D. (2000). Watching solids crystallise using in situ powder diffraction. Chem. Commun. pp. 2283–2291.Google Scholar
Wong, J., Larson, E. M., Waide, P. A. & Frahm, R. (2006). Combustion front dynamics in the combustion synthesis of refractory metal carbides and di-borides using time-resolved X-ray diffraction. J. Synchrotron Rad. 13, 326–335.Google Scholar
Wright, J., Vaughan, G. & Fitch, A. (2003). Merging data from a multi-detector continuous scanning powder diffraction system. International Union of Crystallography Commission on Crystallographic Computing Newsletter, 1, 92–96.Google Scholar
Wroblewski, T. (1991). Resolution functions of powder diffractometers at a synchrotron-radiation source. Acta Cryst. A47, 571–577.Google Scholar
Yamanaka, T. & Ogata, K. (1991). Structure refinement of GeO2 polymorphs at high pressures and temperatures by energy-dispersive spectra of powder diffraction. J. Appl. Cryst. 24, 111–118.Google Scholar
Yao, T. & Jinno, H. (1982). Polarization factor for the X-ray powder diffraction method with a single-crystal monochromator. Acta Cryst. A38, 287–288.Google Scholar
Yonemura, M., Osuki, T., Terasaki, H., Komizo, Y., Sato, M. & Toyokawa, H. (2006). Two-dimensional time-resolved X-ray diffraction study of directional solidification in steels. Mater. Trans. 47, 2292–2298.Google Scholar
Zachariasen, W. H. (1945). Theory of X-ray Diffraction in Crystals. Dover Publications Inc.Google Scholar