Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.3, pp. 66-101

Chapter 2.3. Neutron powder diffraction

C. J. Howarda* and E. H. Kisia

aSchool of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
Correspondence e-mail:


Abele, H., Dubbers, D., Häse, H., Klein, M., Knöpfler, A., Kreuz, M., Lauer, T., Märkisch, B., Mund, D., Nesvizhevsky, V., Petoukhov, A., Schmidt, C., Schumann, M. & Soldner, T. (2006). Characterization of a ballistic supermirror neutron guide. Nucl. Instrum. Methods Phys. Res. A, 562, 407–417.Google Scholar
Ahtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). Correction for preferred orientation in Rietveld refinement. J. Appl. Cryst. 22, 261–268.Google Scholar
Alvarez, L. W. & Bloch, F. (1940). A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys. Rev. 57, 111–122.Google Scholar
Anderson, H. L., Booth, E. T., Dunning, J. R., Fermi, E., Glasoe, G. N. & Slack, F. G. (1939). The fission of uranium. Phys. Rev. 55, 511–512.Google Scholar
Anderson, I. S. & Schärpf, O. (2006). International Tables for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, 1st online ed., edited by E. Prince, pp. 431–432. Chester: International Union of Crystallography.Google Scholar
Arai, M. (2008). J-Parc and the prospective neutron sciences. Pramana J. Phys. 71, 629–638.Google Scholar
Arai, M. & Crawford, K. (2009). Neutron sources and facilties. Neutron Imaging and Applications: a Reference for the Imaging Community, ch. 2. Springer.Google Scholar
Batkov, K., Takibayev, A., Zanini, L. & Mezei, F. (2013). Unperturbed moderator brightness in pulsed neutron sources. Nucl. Instrum. Methods Phys. Res. A, 729, 500–505.Google Scholar
Brown, P. J. (2006a). Magnetic scattering of neutrons. International Tables for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, 1st online ed., edited by E. Prince, pp. 590–593. Chester: International Union of Crystallography.Google Scholar
Brown, P. J. (2006b). Magnetic form factors. International Tables for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, 1st online ed., edited by E. Prince, pp. 454–461. Chester: International Union of Crystallography.Google Scholar
Buras, B. & Holas, A. (1968). Intensity and resolution in neutron time-of-flight powder diffractometry. Nukleonika, 13, 591–619.Google Scholar
Buras, B. & Leciejewicz, J. (1964). A new method for neutron diffraction crystal structure investigations. Phys. Status Solidi B, 4, 349–355.Google Scholar
Burcham, W. E. (1979). Elements of Nuclear Physics, in particular §11.7.2 and p. 353. New York: Longman.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223–228.Google Scholar
Carlile, C. J. (2003). The production of neutrons. Neutron Data Booklet, 2nd ed., edited by A. J. Dianoux & G. Lander, §3.1. Grenoble: Institut Laue–Langevin.Google Scholar
Carlile, C. J., Hey, P. D. & Mack, B. (1977). High-efficiency Soller slit collimators for thermal neutrons. J. Phys. E Sci. Instrum. 10, 543–546.Google Scholar
Carpenter, J. M. (1977). Pulsed spallation neutron sources for slow neutron scattering. Nucl. Instrum. Methods, 145, 91–113.Google Scholar
Chadwick, J. (1932). The existence of a neutron. Proc. R. Soc. London Ser. A, 136, 692–708.Google Scholar
Chatterji, T. (2006). Editor. Neutron Scattering from Magnetic Materials. Amsterdam: Elsevier BV.Google Scholar
Convert, P. & Chieux, P. (2006). Thermal neutron detection. International Tables for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, 1st online ed., edited by E. Prince, pp. 644–652. Chester: International Union of Crystallography.Google Scholar
Cussen, L. D. (2000). Resolution calculations for novel neutron beam elements. J. Appl. Cryst. 33, 1393–1398.Google Scholar
Cussen, L. D. (2016). Optimizing constant wavelength neutron powder diffractometers. Nucl. Instrum. Methods Phys. Res. A, 821, 122–135.Google Scholar
Cussen, L. D., Nekrassov, D., Zendler, C. & Lieutenant, K. (2013). Multiple reflections in elliptic neutron guide tubes. Nucl. Instrum. Methods Phys. Res. A, 705, 121–131.Google Scholar
Cussen, L. D., Vale, C. J., Anderson, I. S. & Høghoj, P. (2001). Tests of a silicon wafer based neutron collimator. Nucl. Instrum. Methods Phys. Res. A, 471, 392–397.Google Scholar
Day, D. H. & Sinclair, R. N. (1969). A pulsed neutron diffraction measurement of preferred orientation in pressed powder compacts of bismuth seleno-telluride. J. Phys. C Solid State Phys. 2, 870–873.Google Scholar
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.Google Scholar
Dowty, E. (1999). ATOMS. Version 5.0.7. Shape Software, Kingsport, Tennessee, USA.Google Scholar
Dunning, J. R., Pegram, G. B., Fink, G. A., Mitchell, D. P. & Segrè, E. (1935). Velocity of slow neutrons by mechanical velocity selector. Phys. Rev. 48, 704.Google Scholar
Fermi, E., Amaldi, E., D'Agostino, O., Rasetti, F. & Segrè, E. (1934). Artificial radioactivity produced by neutron bombardment. Proc. R. Soc. London Ser. A, 146, 483–500.Google Scholar
Fermi, E., Amaldi, E., D'Agostino, O., Pontecorvo, B., Rasetti, F. & Segrè, E. (1934). Azione di sostanze idrogenate sulla radioattivita provocata da neutroni. I. Ric. Sci. 5, 282–283.Google Scholar
Fermi, E., Marshall, J. & Marshall, L. (1947). A thermal neutron velocity selector and its application to the measurement of the cross section of boron. Phys. Rev. 72, 193–196.Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Cryst. 27, 892–900.Google Scholar
Fischer, P., Frey, G., Koch, M., Könnecke, M., Pomjakushin, V., Schefer, J., Thut, R., Schlumpf, N., Bürge, R., Greuter, U., Bondt, S. & Berruyer, E. (2000). High-resolution powder diffractometer HRPT for thermal neutrons at SINQ Physica B, 276–278, 146–147.Google Scholar
Fitzpatrick, M. E. & Lodini, A. (2003). Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. Boca Raton: CRC Press.Google Scholar
Forrester, J. S. & Kisi, E. H. (2004). Ferroelastic switching in a soft lead zirconate titanate. J. Eur. Ceram. Soc. 24, 595–602.Google Scholar
Forrester, J. S., Kisi, E. H. & Studer, A. J. (2005). Direct observation of ferroelastic domain switching in polycrystalline BaTiO3 using in situ neutron diffraction. J. Eur. Ceram. Soc. 25, 447–454.Google Scholar
Friedrich, H., Wagner, V. & Wille, P. (1989). A high-performance neutron velocity selector. Physica B, 156–157, 547–549.Google Scholar
Hahn, O. & Strassmann, F. (1939). Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwissenschaften, 27, 11–15.Google Scholar
Hakonen, P., Lounasmaa, O. V. & Oja, A. (1991). Spontaneous nuclear magnetic ordering in copper and silver at nano- and picokelvin temperatures. J. Magn. Magn. Mater. 100, 394–412.Google Scholar
Halban, H. von, Joliot, F. & Kowarski, L. (1939). Number of neutrons liberated in the nuclear fission of uranium. Nature, 143, 680.Google Scholar
Halban, H. von & Preiswerk, P. (1936). Preuve expérimentale de la diffraction des neutrons. C. R. Acad. Sci. Paris, 203, 73.Google Scholar
Häse, H., Knöpfler, A., Fiederer, K., Schmidt, U., Dubbers, D. & Kaiser, W. (2002). A long ballistic supermirror guide for cold neutrons at ILL. Nucl. Instrum. Methods Phys. Res. A, 485, 453–457.Google Scholar
Hayter, J. B. & Mook, H. A. (1989). Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Cryst. 22, 35–41.Google Scholar
Hewat, A. W. (1975). Design for a conventional high-resolution neutron powder diffractometer. Nucl. Instrum. Methods, 127, 361–370.Google Scholar
Hewat, A. W. & Bailey, I. (1976). D1A, a high resolution neutron powder diffractometer with a bank of Mylar collimators. Nucl. Instrum. Methods, 137, 463–471.Google Scholar
Hill, R. J. & Howard, C. J. (1987). Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst. 20, 467–474.Google Scholar
Hill, R. J. & Madsen, I. C. (1984). The effect of profile-step counting time on the determination of crystal structure parameters by X-ray Rietveld analysis. J. Appl. Cryst. 17, 297–306.Google Scholar
Hill, R. J. & Madsen, I. C. (1986). The effect of profile step width on the determination of crystal structure parameters and estimated standard deviations by X-ray Rietveld analysis. J. Appl. Cryst. 19, 10–18.Google Scholar
Howard, C. J. (1982). The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians. J. Appl. Cryst. 15, 615–620.Google Scholar
Howard, C. J., Ball, C. J., Davis, R. L. & Elcombe, M. M. (1983). The Australian high resolution neutron powder diffractometer. Aust. J. Phys. 36, 507–518.Google Scholar
Howard, C. J. & Kisi, E. H. (1999). Measurement of single-crystal elastic constants by neutron diffraction from polycrystals. J. Appl. Cryst. 32, 624–633.Google Scholar
Howard, C. J., Knight, K. S., Kennedy, B. J. & Kisi, E. H. (2000). The structural phase transitions in strontium zirconate revisited. J. Phys. Condens. Matter, 12, L677–L683.Google Scholar
Izyumov, Y. A. & Ozerov, R. P. (1970). Magnetic Neutron Diffraction. New York: Plenum Press.Google Scholar
Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K. & Kleefisch, M. S. (1987). Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3O7−x. Phys. Rev. B, 36, 3608–3616.Google Scholar
Kennedy, S. J., Wu, E., Kisi, E. H., Gray, E. M. & Kennedy, B. J. (1995). Ordering of deuterium in PdD0.65 at 54 K. J. Phys. Condens. Matter, 7, L33–L40.Google Scholar
Kimura, M., Sugawara, M., Oyamada, M., Yamada, Y., Tomiyoshi, S., Suzuki, T., Watanabe, N. & Takeda, S. (1969). Neutron Debye–Scherrer diffraction works using a linear electron accelerator. Nucl. Instrum. Methods, 71, 102–110.Google Scholar
Kisi, E. H. & Howard, C. J. (2008). Applications of Neutron Powder Diffraction. Oxford University Press.Google Scholar
Kisi, E. H., Howard, C. J. & Hill, R. J. (1989). Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J. Am. Ceram. Soc. 72, 1757–1760.Google Scholar
Kisi, E. H., Kennedy, S. J. & Howard, C. J. (1997). Neutron diffraction observations of ferroelastic domain switching and tetragonal-to-monoclinic transformation in Ce-TZP. J. Am. Ceram. Soc. 80, 621–628.Google Scholar
Kisi, E. H., Wensrich, C. M., Luzin, V. & Kirstein, O. (2014). Stress distribution in iron powder during die compaction. Mater. Sci. Forum, 777, 243–248.Google Scholar
Ma, Y., Kisi, E. H. & Kennedy, S. J. (2001). Neutron diffraction study of ferroelasticity in a 3 mol% Y2O3-ZrO2. J. Am. Ceram. Soc. 84, 399–405.Google Scholar
Marseguerra, M. & Pauli, G. (1959). Neutron transmission probability through a curved revolving slit. Nucl. Instrum. Methods, 4, 140–150.Google Scholar
Marshall, W. & Lovesey, S. W. (1971). Theory of Thermal Neutron Scattering: The Use of Neutrons for the Investigation of Condensed Matter. Oxford: Clarendon Press.Google Scholar
Maruyama, R., Yamazaki, D., Ebisawa, T., Hino, M. & Soyama, K. (2007). Development of neutron supermirrors with large critical angle. Thin Solid Films, 515, 5704–5706.Google Scholar
Masalovich, S. (2013). Analysis and design of multilayer structures for neutron monochromators and supermirrors. Nucl. Instrum. Methods Phys. Res. A, 722, 71–81.Google Scholar
Mason, T. E., Gawne, T. J., Nagler, S. E., Nestor, M. B. & Carpenter, J. M. (2013). The early development of neutron diffraction: science in the wings of the Manhattan Project. Acta Cryst. A69, 37–44.Google Scholar
Meitner, L. & Frisch, O. R. (1939). Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature, 143, 239–240.Google Scholar
Mezei, F. (1976). Novel polarized neutron devices: supermirror and spin component amplifier. Commun. Phys. 1, 81–85.Google Scholar
Mezei, F. (1997). The raison d'être of long pulse spallation sources. J. Neutron Res. 6, 3–32.Google Scholar
Mitchell, D. P. & Powers, P. N. (1936). Bragg reflection of slow neutrons. Phys. Rev. 50, 486–487.Google Scholar
Moisy-Maurice, V. N., Lorenzelli, N., De Novion, C. H. & Convert, P. (1982). High temperature neutron diffraction study of the order–disorder transition in TiC1−x. Acta Metall. 30, 1769–1779.Google Scholar
Moore, M. J., Kasper, J. S. & Menzel, J. H. (1968). Pulsed LINAC neutron diffraction. Nature, 219, 848–849.Google Scholar
Noyan, I. C. & Cohen, J. B. (1987). Residual Stress: Measurement by Diffraction and Interpretation. New York: Springer. Google Scholar
Oed, A. (1988). Position-sensitive detector with microstrip anode for electron multiplication with gases. Nucl. Instrum. Methods Phys. Res. A, 263, 351–359.Google Scholar
Oed, A. (2003). Detectors for thermal neutrons. Neutron Data Booklet, 2nd ed., edited by A. J. Dianoux & G. Lander, §3.3. Grenoble: Institut Laue–Langevin.Google Scholar
Peters, J., Champion, J. D. M., Zsigmond, G., Bordallo, H. N. & Mezei, F. (2006). Using Fermi choppers to shape the neutron pulse. Nucl. Instrum. Methods Phys. Res. A, 557, 580–584.Google Scholar
Radaelli, P. G., Iannone, G., Marezio, M., Hwang, H. Y., Cheong, S. W., Jorgensen, J. D. & Argyriou, D. N. (1997). Structural effects on the magnetic and transport properties of perovskite A(1−x)A(x)′MnO3 (x = 0.25, 0.30). Phys. Rev. B, 56, 8265–8276.Google Scholar
Rauch, H. & Waschkowski, W. (2003). Neutron scattering lengths. Neutron Data Booklet, 2nd ed., edited by A. J. Dianoux & G. Lander, §1.1. Grenoble: Institut Laue–Langevin.Google Scholar
Riley, D. P., Kisi, E. H., Hansen, T. C. & Hewat, A. W. (2002). Self-propagating high-temperature synthesis of Ti3SiC2: I, ultra-high-speed neutron diffraction study of the reaction mechanism. J. Am. Ceram. Soc. 85, 2417–2424.Google Scholar
Rodriguez, D. M., Kennedy, S. J. & Bentley, P. M. (2011). Properties of elliptical guides for neutron beam transport and applications for new instrumentation concepts. J. Appl. Cryst. 44, 727–737.Google Scholar
Rush, J. J. & Cappelletti, R. L. (2011). The NIST Center for Neutron Research: Over 40 Years Serving NIST/NBS and the Nation. National Institute of Standards Special Publication (NIST SP) 1120. National Institute of Standards, Gaithersburg, Maryland, USA.Google Scholar
Sabine, T. M. (1985). Extinction in polycrystalline materials. Aust. J. Phys. 38, 507–518.Google Scholar
Schanzer, C., Böni, P., Filges, U. & Hils, T. (2004). Advanced geometries for ballistic neutron guides. Nucl. Instrum. Methods Phys. Res. A, 529, 63–68.Google Scholar
Schoenborn, B. P., Caspar, D. L. D. & Kammerer, O. F. (1974). A novel neutron monochromator. J. Appl. Cryst. 7, 508–510.Google Scholar
Sears, V. F. (2006). Scattering lengths for neutrons. International Tables for Crystallography, Volume C, Mathematical, Physical and Chemical Tables, 1st online ed., edited by E. Prince, pp. 444–454. Chester: International Union of Crystallography.Google Scholar
Shull, C. G. (1995). Early development of neutron scattering. Rev. Mod. Phys. 67, 753–757.Google Scholar
Shull, C. G., Strauser, W. A. & Wollan, E. O. (1951). Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys. Rev. 83, 333–345.Google Scholar
Shull, C. G., Wollan, E. O., Morton, G. A. & Davidson, W. L. (1948). Neutron diffraction studies of NaH and NaD. Phys. Rev. 73, 842–847.Google Scholar
Smith, R. I. et al. (2018). In preparation.Google Scholar
Soller, W. (1924). A new precision X-ray spectrometer. Phys. Rev. 24, 158–167.Google Scholar
Soper, A. K., Howells, W. S., Hannon, A. C., Turner, J. Z. & Bowron, D. T. (2000). ATLAS – analysis of time-of-flight diffractometer data from liquid and amorphous samples. .Google Scholar
Squires, G. L. (1978). Introduction to the Theory of Thermal Neutron Scattering. Cambridge University Press.Google Scholar
Szilard, L. & Chalmers, T. A. (1934). Detection of neutrons liberated from beryllium by gamma rays: a new technique for inducing radioactivity. Nature, 134, 494–495.Google Scholar
Tamura, I., Aizawa, K., Harada, M., Shibata, K., Maekawa, F., Soyama, K. & Arai, M. (2003). Simulation for developing new pulse neutron spectrometers: creation of new McStas components of moderators of JSNS. JAERI Research Report 2003-008. JAERI, Japan.Google Scholar
Tashmetov, M. Y., Em, V. T. E., Lee, C. H., Shim, H. S., Choi, Y. N. & Lee, J. S. (2002). Neutron diffraction study of the ordered structures of nonstoichiometric titanium carbide. Physica B, 311, 318–325.Google Scholar
Thomsen, K. (2014). Conceptual proposal for compound moderators with preferential emission directions. Phys. Procedia, 60, 278–293.Google Scholar
Tremsin, A. S., McPhate, J. B., Vallerga, J. V., Siegmund, O. H. W., Feller, W. B., Lehmann, E., Butler, L. G. & Dawson, M. (2011). High-resolution neutron microtomography with noiseless neutron counting detector. Nucl. Instrum. Methods Phys. Res. A, 652, 400–403.Google Scholar
Tremsin, A. S., McPhate, J. B., Vallerga, J. V., Siegmund, O. H. W., Kockelmann, A., Steuwer, A. & Feller, W. B. (2011). High-resolution neutron counting sensor in strain mapping through transmission Bragg edge diffraction. IEEE Sens. J. 11, 3433–3436.Google Scholar
Turchin, V. F. (1967). Deposited Paper, USSR Atomic Energy, 1967, p. 22.Google Scholar
Vogt, T., Passell, L., Cheung, S. & Axe, J. D. (1994). Using wafer stacks as neutron monochromators. Nucl. Instrum. Methods Phys. Res. A, 338, 71–77.Google Scholar
Wensrich, C. M., Kisi, E. H., Luzin, V., Garbe, U., Kirstein, O., Smith, A. L. & Zhang, J. F. (2014). Force chains in monodisperse spherical particle assemblies: three-dimensional measurements using neutrons. Phys. Rev. E, 90, 042203.Google Scholar
Wensrich, C. M., Kisi, E. H., Zhang, J. F. & Kirstein, O. (2012). Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granular Matter, 14, 67–680.Google Scholar
Wilkins, S. W., Stevenson, A. W., Nugent, K. A., Chapman, H. & Steenstrup, S. (1989). On the concentration, focusing, and collimation of x-rays and neutrons using microchannel plates and configurations of holes. Rev. Sci. Instrum. 60, 1026–1036.Google Scholar
Willendrup, P., Farhi, E., Knudsen, E., Filges, U. & Lefmann, K. (2014). McStas: Past, present and future. J. Neutron Res. 17, 35–43.Google Scholar
Wollan, E. O. & Borst, L. B. (1945). Physics Section III Monthly Report for the Period Ending December 31, 1944, p. 37. Metallurgical Project Report No. M-CP-2222. Clinton Laboratories, Oak Ridge, Tennessee, USA.Google Scholar
Wollan, E. O. & Shull, C. G. (1948). The diffraction of neutrons by crystalline powders. Phys. Rev. 73, 830–841.Google Scholar
Worlton, T. G., Jorgensen, J. D., Beyerlein, R. A. & Decker, D. L. (1976). Multicomponent profile refinement of time-of-flight neutron powder diffraction data. Nucl. Instrum. Methods, 137, 331–337.Google Scholar
Wu, E., Kennedy, S. J., Gray, E. M. & Kisi, E. H. (1996). The ordered structure of PdD0.78 at 70–75K. J. Phys. Condens. Matter, 8, 2807–2813.Google Scholar
Zendler, C., Lieutenant, K., Nekrassov, D. & Fromme, M. (2014). VITESS 3 – virtual instrumentation tool for the European Spallation Source. J. Phys. Conf. Ser. 528, 012036.Google Scholar
Zhang, J. F., Wensrich, C. M., Kisi, E. H., Luzin, V., Kirstein, O. & Smith, A. L. (2016). Stress distributions in compacted powders in convergent and stepped dies. Powder Technol. 292, 23–30.Google Scholar
Zhao, J. K., Robertson, J. L., Herwig, K. W., Gallmeier, F. X. & Riemer, B. W. (2013). Optimizing moderator dimensions for neutron scattering at the spallation neutron source. Rev. Sci. Instrum. 84, 125104.Google Scholar
Zinn, W. H. (1947). Diffraction of neutrons by a single crystal. Phys. Rev. 71, 752–757.Google Scholar
Zinn, W. H. & Szilard, L. (1939). Emission of neutrons by uranium. Phys. Rev. 56, 619–624.Google Scholar