International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.4, pp. 102-117
https://doi.org/10.1107/97809553602060000939

Chapter 2.4. Electron powder diffraction

J.-M. Zuo,a* J. L. Lábár,b J. Zhang,c T. E. Gorelikd and U. Kolbe

aDepartment of Materials Science and Engineering, University of Illinois, 1304 W. Green Street, Urbana, IL 61801, USA,bInstitute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly Thege M. u. 29–33, H-1121 Budapest, Hungary,cIntel Corporation, Technology Manufacturing Group, 2501 NE Century Boulevard, Hillsboro, OR 97124, USA,dUniversity of Ulm, Central Facility for Electron Microscopy, Electron Microscopy Group of Materials Science (EMMS), Albert Einstein Allee 11, 89069 Ulm, Germany, and eInstitut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Welderweg 11, 55099 Mainz, Germany
Correspondence e-mail:  jianzuo@illinois.edu

References

Abeykoon, M. C. D., Malliakas, C. D., Juhás, P., Bozin, E. S., Kanatzidis, M. G. & Billinge, S. J. L. (2012). Quantitative nanostructure characterization using atomic pair distribution functions obtained from laboratory electron microscopes. Z. Kristallogr. 227, 248–256.Google Scholar
Ankele, J., Mayer, J., Lamparter, P. & Steeb, S. (2005). Quantitative electron diffraction data of amorphous materials. Z. Naturforsch. A, 60, 459–468.Google Scholar
Anstis, G. R. Z., Liu, Z. & Lake, M. (1988). Investigation of amorphous materials by electron diffraction – the effects of multiple scattering. Ultramicroscopy, 26, 65–69.Google Scholar
Baerlocher, C., Gramm, F., Massüger, L., McCusker, L. B., He, Z., Hovmöller, S. & Zou, X. (2007). Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science, 315, 1113–1116.Google Scholar
Barna, Á. & Pécz, B. (1997). Preparation techniques for transmission electron microscopy. In Handbook of Microscopy, edited by S. Amelinckx, D. van Dyck, J. van Landuyt & G. van Tendeloo, Vol. 3, pp. 751–801. Weinheim: Wiley-VCH Verlag GmbH. Google Scholar
Blackman, M. (1939). On the intensities of electron diffraction rings. Proc. R. Soc. London Ser. A, 173, 68–82.Google Scholar
Botton, G. (2007). Analytical electron microscopy. In Science of Microscopy, edited by P. Hawkes & J. C. H. Spence, pp. 273–405. New York: Springer.Google Scholar
Burdett, J. K. T., Hughbanks, T., Miller, G. J., Richardson, J. W. & Smith, J. V. (1987). Structural–electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639–3646.Google Scholar
Chen, H. & Zuo, J. M. (2007). Structure and phase separation of Ag–Cu alloy thin films. Acta Mater. 55, 1617–1628.Google Scholar
Childs, P. A. & Misell, D. L. (1972). Some aspects of elastic plural scattering of electrons by atoms. J. Phys. D Appl. Phys. 5, 2095.Google Scholar
Cockayne, D. J. H. (2007). The study of nanovolumes of amorphous materials using electron scattering. Annu. Rev. Mater. Res. 37, 159–187.Google Scholar
Cockayne, D. J. H. & McKenzie, D. R. (1988). Electron diffraction analysis of polycrystalline and amorphous thin films. Acta Cryst. A44, 870–878.Google Scholar
Cowley, J. M. (1992). Electron Diffraction Techniques. International Union of Crystallography Monographs on Crystallography. Oxford: IUCr/Oxford University Press.Google Scholar
Cowley, J. M. (1995). Diffraction Physics. Amsterdam: Elsevier Science BV.Google Scholar
Cowley, J. M. (1999). Electron nanodiffraction. Microsc. Res. Tech. 46, 75–97.Google Scholar
Cowley, J. M. & Hewat, A. W. (2004). Powder and related techniques: electron and neutron techniques. International Tables for Crystallography Vol. C, pp. 80–83. Dordrecht: Kluwer Academic Publishers.Google Scholar
Djerdj, I. & Tonejc, A. M. (2005). Transmission electron microscopy studies of nanostructured TiO2 films on various substrates. Vacuum, 80, 371–378.Google Scholar
Djerdj, I. & Tonejc, A. M. (2006). Structural investigations of nanocrystalline TiO2 samples. J. Alloys Compd. 413, 159–174.Google Scholar
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.Google Scholar
Egami, T. & Billinge, S. J. L. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Oxford: Pergamon.Google Scholar
Egerton, R. F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.Google Scholar
Elsayedali, H. E. & Herman, J. W. (1990). Ultrahigh vacuum picosecond laser-driven electron diffraction system. Rev. Sci. Instrum. 61, 1636–1647.Google Scholar
Faber, J. & Fawcett, T. (2002). The Powder Diffraction File: present and future. Acta Cryst. B58, 325–332.Google Scholar
Farrow, C. L. & Billinge, S. J. L. (2009). Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. Acta Cryst. A65, 232–239.Google Scholar
Gammer, C. C., Mangler, C., Rentenberger, C. & Karnthaler, H. P. (2010). Quantitative local profile analysis of nanomaterials by electron diffraction. Scr. Mater. 63, 312–315.Google Scholar
Gemmi, M. J., Fischer, J., Merlini, M., Poli, S., Fumagalli, P., Mugnaioli, E. & Kolb, U. (2011). A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth Planet. Sci. Lett. 310, 422–428.Google Scholar
Gemmi, M., Voltolini, M., Ferretti, A. M. & Ponti, A. (2011). Quantitative texture analysis from powder-like electron diffraction data. J. Appl. Cryst. 44, 454–461.Google Scholar
Gemmi, M., Zou, X. D., Hovmöller, S., Migliori, A., Vennström, M. & Andersson, Y. (2003). Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Cryst. A59, 117–126.Google Scholar
Gjonnes, K., Cheng, Y., Berg, B. S. & Hansen, V. (1998). Corrections for multiple scattering in integrated electron diffraction intensities. Application to determination of structure factors in the [001] projection of AlmFe. Acta Cryst. A54, 102–119.Google Scholar
Gorelik, T., Matveeva, G., Kolb, U., Schleuss, T., Kilbinger, A. F. M., van de Streek, J., Bohled, A. & Brunklaus, G. (2010). H-bonding schemes of di- and tri-p-benzamides assessed by a combination of electron diffraction, X-ray powder diffraction and solid-state NMR. CrystEngComm, 12, 1824–1832.Google Scholar
Gramm, F. C., Baerlocher, C., McCusker, L. B., Warrender, S. J., Wright, P. A., Han, B., Hong, S. B., Liu, Z., Ohsuna, T. & Terasaki, O. (2006). Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature, 444, 79–81.Google Scholar
Haider, M. H., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy, 75, 53–60.Google Scholar
Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193.Google Scholar
Hill, R. J. & Howard, C. J. (1987). Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst. 20, 467–474.Google Scholar
Hirata, A., Hirotsu, Y., Ohkubo, T., Hanada, T. & Bengus, V. Z. (2006). Compositional dependence of local atomic structures in amorphous Fe100−xBx (x = 14, 17, 20) alloys studied by electron diffraction and high-resolution electron microscopy. Phys. Rev. B, 74, 214206.Google Scholar
Hirata, A. T., Morino, T., Hirotsu, Y., Itoh, K. & Fukunaga, T. (2007). Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction. Mater. Trans. 48, 1299–1303.Google Scholar
Hirotsu, Y. T., Ohkubo, T., Bae, I.-T. & Ishimaru, M. (2003). Electron diffraction structure analysis for amorphous materials. Mater. Chem. Phys. 81, 360–363.Google Scholar
Horstmann, M. & Meyer, G. (1962). Messung der elastischen Elektronenbeugungsintensitäten polykristalliner Aluminium-Schichten. Acta Cryst. 15, 271–281.Google Scholar
Hovmoller, S., Zou, X. & Weirich, T. E. (2002). Crystal structure determination from EM images and electron diffraction patterns. Adv. Imaging Electron Phys. 123, 257–289.Google Scholar
Howard, C. J., Sabine, T. M. & Dickson, F. (1991). Structural and thermal parameters for rutile and anatase. Acta Cryst. B47, 462–468.Google Scholar
Ichimiya, A. & Cohen, P. I. (2004). Reflection High-Energy Electron Diffraction. Cambridge University Press.Google Scholar
International Tables for Crystallography (2004). Volume C, Mathematical, Physical and Chemical Tables, edited by E. Prince. Dordrecht: Kluwer Academic Publishers.Google Scholar
Ishimaru, M. (2006). Electron-beam radial distribution analysis of irradiation-induced amorphous SiC. Nucl. Instrum. Methods Phys. Res. Sect. B, 250, 309–314.Google Scholar
Ishimaru, M., Bae, I.-T., Hirotsu, Y., Matsumura, S. & Sickafus, K. E. (2002). Structural relaxation of amorphous silicon carbide. Phys. Rev. Lett. 89, 055502.Google Scholar
Jansen, J., Tang, D., Zandbergen, H. W. & Schenk, H. (1998). MSLS, a least-squares procedure for accurate crystal structure refinement from dynamical electron diffraction patterns. Acta Cryst. A54, 91–101.Google Scholar
Kim, J. G., Seo, J. W., Cheon, J. & Kim, Y. J. (2009). Rietveld analysis of nano-crystalline MnFe2O4 with electron powder diffraction. Bull. Korean Chem. Soc. 30, 183–187.Google Scholar
Kis, V. K. M., Posfai, M. & Labar, J. (2006). Nanostructure of atmospheric soot particles. Atmos. Environ. 40, 5533–5542.Google Scholar
Kolb, U. K., Büscher, K., Helm, C. A., Lindner, A., Thünemann, A. F., Menzel, M., Higuchi, M. & Kurth, D. G. (2006). The solid-state architecture of a metallosupramolecular polyelectrolyte. Proc. Natl Acad. Sci. USA, 103, 10202–10206. Google Scholar
Kovács Kis, V., Dódony, I. & Lábár, J. L. (2006). Amorphous and partly ordered structures in SiO2 rich volcanic glasses. An ED study. Eur. J. Mineral. 18, 745–752.Google Scholar
Lábár, J. L. (2006). Phase identification by combining local composition from EDX with information from diffraction database. In Electron Crystallography, edited by T. E. Weirich, J. L. Lábár & X. Zou, Nato Science Series II, Vol. 211, pp. 207–218. Dordrecht: Springer.Google Scholar
Lábár, J. L. (2008). Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, part I: principles. Microsc. Microanal. 14, 287–295.Google Scholar
Lábár, J. L. (2009). Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, part II: implementation. Microsc. Microanal. 15, 20–29.Google Scholar
Lábár, J. L. & Adamik, M. (2001). ProcessDiffraction V1.2: new possibilities in manipulating electron diffraction ring patterns. Microsc. Microanal. 7 (Suppl. 2), 372–373.Google Scholar
Lábár, J. L. M., Adamik, M., Barna, B. P., Czigány, Z., Fogarassy, Z., Horváth, Z. E., Geszti, O., Misják, F., Morgiel, J., Radnóczi, G., Sáfrán, G., Székely, L. & Szüts, T. (2012). Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, part III: application examples. Microsc. Microanal. 18, 406–420.Google Scholar
Lábár, J. L. & Egerton, R. (1999). Special issue on ion beam techniques. Micron, 30, 195–196.Google Scholar
Li, X. Z. (2010). PCED2.0 – a computer program for the simulation of polycrystalline electron diffraction pattern. Ultramicroscopy, 110, 297–304.Google Scholar
Luo, Z., Vasquez, Y., Bondi, J. F. & Schaak, R. E. (2011). Pawley and Rietveld refinements using electron diffraction from L12-type intermetallic Au3Fe1−x nanocrystals during their in-situ order–disorder transition. Ultramicroscopy, 111, 1295–1304.Google Scholar
Lutterotti, L. D., Chateigner, D., Ferrari, S. & Ricote, J. (2004). Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films, 450, 34–41.Google Scholar
Lutterotti, L., Matthies, S. & Wenk, H. R. (1999). MAUD: a friendly Java program for Material Analysis Using Diffraction. IUCr CPD Newsletters, 21, May 1999. http://www.mx.iucr.org/iucr-top/comm/cpd/Newsletters/no21may1999/art17/art17.htm .Google Scholar
Lutterotti, L. S., Matthies, S., Wenk, H.-R., Schultz, A. S. & Richardson, J. W. Jr (1997). Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594–600.Google Scholar
McCusker, L. B. & Baerlocher, C. (2009). Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures. Chem. Commun. pp. 1439–1451.Google Scholar
McGreevy, R. L. & Pusztai, L. (1988). Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1, 359–367.Google Scholar
McKenzie, D. R., Muller, D., Pailthorpe, B. A., Wang, Z. H., Kravtchinskaia, E., Segal, D., Lukins, P. B., Swift, P. D., Martin, P. J., Amaratunga, G., Gaskell, P. H. & Saeed, A. (1991). Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition. Diamond Relat. Mater. 1, 51–59.Google Scholar
Mecking, H. (1985). Textures of metals. In Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, edited by H.-R. Wenk, pp. 267–306. Orlando/London: Academic Press Inc.Google Scholar
Moeck, P. & Fraundorf, P. (2007). Structural fingerprinting in the transmission electron microscope: overview and opportunities to implement enhanced strategies for nanocrystal identification. Z. Kristallogr. 222, 634–645.Google Scholar
Moeck, P. & Rouvimov, S. (2010). Precession electron diffraction and its advantages for structural fingerprinting in the transmission electron microscope. Z. Kristallogr. 225, 110–124.Google Scholar
Moss, S. C. & Graczyk, J. F. (1969). Evidence of voids within the as-deposited structure of glassy silicon. Phys. Rev. Lett. 23, 1167–1171.Google Scholar
Mugnaioli, E., Andrusenko, I., Schüler, T., Loges, N., Dinnebier, R. E., Panthöfer, M., Tremel, W. & Kolb, U. (2012). Ab initio structure determination of vaterite by automated electron diffraction. Angew. Chem. 51, 7041–7045.Google Scholar
Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. Comput. J. 7, 308–313.Google Scholar
Oleynikov, P. & Hovmoller, S. (2004). TexPat – a program for quantitative analysis of oblique texture electron diffraction patterns. Z. Kristallogr. 219, 12–19.Google Scholar
Oleynikov, P. & Hovmoller, S. (2007). Precession electron diffraction: observed and calculated intensities. Ultramicroscopy, 107, 523–533.Google Scholar
Orloff, J., Swanson, L. & Utlaut, M. (2002). High Resolution Focused Ion Beams: FIB and Applications. New York: Springer.Google Scholar
Own, C. S., Marks, L. D. & Sinkler, W. (2006). Precession electron diffraction 1: multislice simulation. Acta Cryst. A62, 434–443.Google Scholar
Őzdöl, V. B., Srot, V. & van Aken, P. A. (2012). Sample preparation for transmission electron microscopy. In Handbook of Nanoscopy, edited by G. Van Tendeloo, D. Van Dyck & S. J. Pennycook. Weinheim: Wiley.Google Scholar
Peng, L. M., Dudarev, S. L. & Whelan, M. J. (2004). High-Energy Electron Diffraction and Microscopy. USA: Oxford University Press.Google Scholar
Petersen, T. C., McBride, W., McCulloch, D. G., Snook, I. K. & Yarovsky, I. (2005). Refinements in the collection of energy filtered diffraction patterns from disordered materials. Ultramicroscopy, 103, 275–283.Google Scholar
Rauch, E. F., Váron, M., Portillo, J., Bultreys, D., Maniette, Y. & Nicolopoulos, S. (2008). Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Anal. 22, S5–S8.Google Scholar
Reimer, L. (1984). Transmission Electron Microscopy – Physics of Image Formation and Microanalysis. Heidelberg: Springer-Verlag.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.Google Scholar
Rez, P. (1983). A transport-equation theory of beam spreading in the electron microscope. Ultramicroscopy, 12, 29–38.Google Scholar
Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 192, 55–69.Google Scholar
Rose, H. & Krahl, D. (1995). Electron optics of imaging energy filters. In Energy-Filtering Transmission Electron Microscopy, edited by L. Reimer, pp. 43–149. Berlin: Springer.Google Scholar
Saunders, M., Bird, D. M., Zaluzec, N. J., Burgess, W. G., Preston, A. R. & Humphreys, C. J. (1995). Measurement of low-order structure factors for silicon from zone-axis CBED patterns. Ultramicroscopy, 60, 311–323.Google Scholar
Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science, 302, 1382–1385.Google Scholar
Song, K. Y. J., Kim, Y.-J., Kim, Y.-I. & Kim, J.-G. (2012). Application of theta-scan precession electron diffraction to structure analysis of hydroxyapatite nanopowder. J. Electron Microsc. 61, 9–15.Google Scholar
Sun, J., Bonneau, C., Cantín, A., Corma, A., Díaz-Cabañas, M. J., Moliner, M., Zhang, D., Li, M. & Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458, 1154–1157.Google Scholar
Tang, L., Feng, Y. C., Lee, L.-L. & Laughlin, D. E. (1996). Electron diffraction patterns of fibrous and lamellar textured polycrystalline thin films. II. Applications. J. Appl. Cryst. 29, 419–426.Google Scholar
Tonejc, A. M., Djerdj, I. & Tonejc, A. (2002). An analysis of evolution of grain size-lattice parameters dependence in nanocrystalline TiO2 anatase. Mater. Sci. Eng. C, 19, 85–89.Google Scholar
Tsuda, K., Ogata, Y., Takagi, K., Hashimoto, T. & Tanaka, M. (2002). Refinement of crystal structural parameters and charge density using convergent-beam electron diffraction – the rhombohedral phase of LaCrO3. Acta Cryst. A58, 514–525.Google Scholar
Tsuda, K. & Tanaka, M. (1999). Refinement of crystal structural parameters using two-dimensional energy-filtered CBED patterns. Acta Cryst. A55, 939–954.Google Scholar
Turner, P. S. & Cowley, J. M. (1969). The effects of N-beam dynamical diffraction on electron diffraction intensities from polycrystalline materials. Acta Cryst. A25, 475–481.Google Scholar
Ungár, T., Gubicza, J., Ribárik, G. & Borbély, A. (2001). Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Cryst. 34, 298–310.Google Scholar
Vainshtein, B. K. (1964). Structure Analysis by Electron Diffraction. Oxford: Pergamon Press.Google Scholar
Vainshtein, B. K., Zvyagin, B. B. & Avilov, A. S. (1992). Electron diffraction structure analysis. In Electron Diffraction Techniques, Vol. 1, edited by J. M. Cowley, pp. 216–312. Oxford University Press.Google Scholar
Vincent, R. & Exelby, D. R. (1991). Structure of metastable Al–Ge phases determined from HOLZ Patterson transforms. Philos. Mag. Lett. 63, 31–38.Google Scholar
Vincent, R. & Midgley, P. A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–282.Google Scholar
Warren, B. E. (1990). X-ray Diffraction. New York: Dover Publications.Google Scholar
Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Cryst. A47, 590–597.Google Scholar
Weirich, T. E. M., Winterer, M., Seifried, S., Hahn, H. & Fuess, H. (2000). Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy, 81, 263–270.Google Scholar
Williams, D. B. & Carter, C. B. (2009). Transmission Electron Microscopy: a Textbook for Materials Science. New York: Springer.Google Scholar
Wu, J. S. K., Leinenweber, K., Spence, J. C. H. & O'Keeffe, M. (2006). Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 5, 647–652.Google Scholar
Zhang, J. (2011). Atomic structures of carbon nanomaterials studied by coherent electron diffraction. PhD thesis, University of Illinois, USA.Google Scholar
Zhuang, J. L. K., Lommel, K., Ceglarek, D., Andrusenko, I., Kolb, U., Maracke, S., Sazama, U., Fröba, M. & Terfort, A. (2011). Synthesis of a new copper-azobenzene dicarboxylate framework in the form of hierarchical bulk solids and thin films without and with patterning. Chem. Mater. 23, 5366–5374.Google Scholar
Zuo, J. M. (1993). New method of Bravais lattice determination. Ultramicroscopy, 52, 459–464.Google Scholar
Zuo, J. M. (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc. Res. Tech. 49, 245–268.Google Scholar
Zuo, J. M. (2004). Measurements of electron densities in solids: a real-space view of electronic structure and bonding in inorganic crystals. Rep. Prog. Phys. 67, 2053–2103.Google Scholar
Zuo, J. M., Gao, M., Tao, J., Li, B. Q., Twesten, R. & Petrov, I. (2004). Coherent nano-area electron diffraction. Microsc. Res. Tech. 64, 347–355.Google Scholar
Zuo, J. M., Kim, M. & Holmestad, R. (1998). A new approach to lattice parameter measurements using dynamic electron diffraction and pattern matching. J. Electron Microsc. 47, 121–127.Google Scholar
Zuo, J. M. & Spence, J. C. H. (1991). Automated structure factor refinement from convergent-beam patterns. Ultramicroscopy, 35, 185–196.Google Scholar
Zuo, J. M. & Spence, J. C. H. (2017). Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience. New York: Springer.Google Scholar