Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.5, pp. 118-149

Chapter 2.5. Two-dimensional powder diffraction

B. B. Hea*

aBruker AXS Inc., 5465 E. Cheryl Parkway, Madison, WI 53711, USA
Correspondence e-mail:


Alexander, L. E. (1985). X-ray Diffraction Methods in Polymer Science. Malabar: Krieger Publishing Company.Google Scholar
Allahkarami, M. & Hanan, J. C. (2011). X-ray diffraction mapping on a curved surface. J. Appl. Cryst. 44, 1211–1216.Google Scholar
Arndt, U. W. (1986). X-ray position-sensitive detectors. J. Appl. Cryst. 19, 145–163.Google Scholar
Arndt, U. W. (1990). Focusing optics for laboratory sources in X-ray crystallography. J. Appl. Cryst. 23, 161–168.Google Scholar
Bergese, P., Bontempi, E., Colombo, I. & Depero, L. E. (2001). Micro X-ray diffraction on capillary powder samples: a novel and effective technique for overcoming preferred orientation. J. Appl. Cryst. 34, 663–665.Google Scholar
Bhuvanesh, N. S. P. & Reibenspies, J. H. (2003). A novel approach to micro-sample X-ray powder diffraction using nylon loops. J. Appl. Cryst. 36, 1480–1481.Google Scholar
Birkholz, M. (2006). Thin Film Analysis by X-ray Scattering, pp. 191–195. Weinheim: Wiley-VCH.Google Scholar
Blanton, T. N. (1994). X-ray diffraction orientation studies using two-dimensional detectors. Adv. X-ray Anal. 37, 367–373.Google Scholar
Blanton, T. N. (2003). X-ray film as a two-dimensional detector for X-ray diffraction analysis. Powder Diffr. 18, 91–98.Google Scholar
Bloomer, A. C. & Arndt, U. W. (1999). Experiences and expectations of a novel X-ray microsource with focusing mirror. I. Acta Cryst. D55, 1672–1680.Google Scholar
Boesecke, P. (2007). Reduction of two-dimensional small- and wide-angle X-ray scattering data. J. Appl. Cryst. 40, s423–s427.Google Scholar
Bontempi, E., Benedetti, D., Massardi, A., Zacco, A., Borgese, L. & Depero, L. E. (2008). Laboratory two-dimensional X-ray microdiffraction technique: a support for authentication of an unknown Ghirlandaio painting. Appl. Phys. A, 92, 155–159.Google Scholar
Borgonovi, G. M. (1984). Determination of residual stress from two-dimensional diffraction pattern. Nondestructive Methods for Material Property Determination, edited by C. O. Ruud & R. E. Green Jr, pp. 47–57. New York: Plenum Publishing Corporation.Google Scholar
Bourgeois, D., Moy, J. P., Svensson, S. O. & Kvick, Å. (1994). The point-spread function of X-ray image-intensifiers/CCD-camera and imaging-plate systems in crystallography: assessment and consequences for the dynamic range. J. Appl. Cryst. 27, 868–877.Google Scholar
Bruker (2000). Percent crystallinity in polymer. Bruker AXS Lab Report No. L86-E00005.Google Scholar
Bunge, H. J. (1983). Texture Analysis in Materials Science. London: Butterworth.Google Scholar
Bunge, H. J. & Klein, H. (1996). Determination of quantitative, high-resolution pole-figures with the area detector. Z. Metallkd. 87(6), 465–475.Google Scholar
Campbell, J. W., Harding, M. M. & Kariuki, B. (1995). Spatial-distortion corrections, for Laue diffraction patterns recorded on image plates, modelled using polynomial functions. J. Appl. Cryst. 28, 43–48.Google Scholar
Cervellino, A., Giannini, C., Guagliardi, A. & Ladisa, M. (2006). Folding a two-dimensional powder diffraction image into a one-dimensional scan: a new procedure. J. Appl. Cryst. 39, 745–748.Google Scholar
Chung, F. H. & Scott, R. W. (1973). A new approach to the determination of crystallinity of polymers by X-ray diffraction. J. Appl. Cryst. 6, 225–230.Google Scholar
Cullity, B. D. (1978). Elements of X-ray Diffraction, 2nd ed. Reading, MA: Addison-Wesley.Google Scholar
Derewenda, Z. & Helliwell, J. R. (1989). Calibration tests and use of a Nicolet/Xentronics imaging proportional chamber mounted on a conventional source for protein crystallography. J. Appl. Cryst. 22, 123–137.Google Scholar
Dickerson, M. B., Pathak, K., Sandhage, K. H., Snyder, R. L., Balachandran, U., Ma, B., Blaugher, R. D. & Bhattacharya, R. N. (2002). Applications of 2D detectors in x-ray analysis. Adv. X-ray Anal. 45, 338–344.Google Scholar
Durst, R. D., Carney, S. N., Diawara, Y. & Shuvalov, R. (2002). Readout structure and technique for electron cloud avalanche detectors. US Patent No. 6, 340, 819. Google Scholar
Eatough, M. O., Rodriguez, M. A., Blanton, T. N. & Tissot, R. G. (1997). A comparison of detectors used for microdiffraction applications. Adv. X-ray Anal. 41, 319–326.Google Scholar
Ercan, A., Tate, M. W. & Gruner, S. M. (2006). Analog pixel array detectors. J. Synchrotron Rad. 13, 110–119.Google Scholar
European Standard (2008). Non-destructive Testing – Test Method for Residual Stress Analysis by X-ray Diffraction. EN15305–2008.Google Scholar
Flemming, R. L. (2007). Micro X-ray diffraction (µXRD): a versatile technique for characterization of Earth and planetary materials. Can. J. Earth Sci. 44, 1333–1346.Google Scholar
Fuentes-Montero, L., Montero-Cabrera, M. E. & Fuentes-Cobas, L. (2011). The software package ANAELU for X-ray diffraction analysis using two-dimensional patterns. J. Appl. Cryst. 44, 241–246.Google Scholar
Fujii, N. & Kozaki, S. (1993). Highly sensitive x-ray stress measurement in small area. Adv. X-ray Anal. 36, 505–513.Google Scholar
Fujita, H., Tsai, D.-Y., Itoh, T., Doi, K., Morishita, J., Ueda, K. & Ohtsuka, A. (1992). A simple method for determining the modulation transfer function in digital radiography. IEEE Trans. Med. Imag. 11, 34–39.Google Scholar
Gelfi, M., La Vecchia, G. M., Lecis, N. & Troglio, S. (2005). Relationship between through-thickness residual stress of CrN-PVD coatings and fatigue nucleation sites. Surf. Coat. Technol. 192, 263–268.Google Scholar
Giomatartis, Y. (1998). Development and prospects of the new gaseous detector `Micromegas'. Nucl. Instrum. Methods A, 419, 239.Google Scholar
Guggenheim, S. (2005). Simulations of Debye–Scherrer and Gandolfi patterns using a Bruker Smart Apex diffractometer system. Bruker AXS Application Note 373.Google Scholar
Hammersley, A. P. (2016). FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Cryst. 49, 646–652.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Häusermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res. 14, 235–248.Google Scholar
Hanan, J., Űstündag, E. & Almer, J. D. (2004). A new analysis method for two-dimensional X-ray data. Adv. X-ray Anal. 47, 174–180.Google Scholar
Hanna, S. & Windle, A. H. (1995). A novel polymer fibre diffractometer, based on a scanning X-ray-sensitive charge-coupled device. J. Appl. Cryst. 28, 673–689.Google Scholar
He, B. (1992). X-ray Diffraction from Point-Like Imperfection. PhD dissertation, Virginia Tech, USA.Google Scholar
He, B. B. (2000). Residual stress measurement with two-dimensional diffraction. The 20th ASM Heat Treating Society Conference Proceedings, Vol. 1, pp. 408–417. St Louis, USA.Google Scholar
He, B. B. (2003). Introduction to two-dimensional X-ray diffraction. Powder Diffr. 18, 71–85.Google Scholar
He, B. B. (2004). Microdiffraction using two-dimensional detectors. Powder Diffr. 19, 110–118.Google Scholar
He, B. B. (2006). Measurement of residual stresses in thin films by two-dimensional XRD. Mater. Sci. Forum, 524–525, 613–618.Google Scholar
He, B. B. (2009). Two-dimensional X-ray Diffraction. New York: John Wiley & Sons.Google Scholar
He, B. B., Anzelmo, J., LaPuma, P., Preckwinkel, U. & Smith, K. (2001). XRD rapid screening system for combinatorial chemistry. Adv. X-ray Anal. 44, 1–5.Google Scholar
He, T., Durst, R. D., Becker, B. L., Kaercher, J. & Wachter, G. (2011). A large area X-ray imager with online linearization and noise suppression. Proc. SPIE, 8142, 81421Q.Google Scholar
He, B. B. & Preckwinkel, U. (2002). X-ray optics for two-dimensional x-ray diffraction. Adv. X-ray Anal. 45, 332–337.Google Scholar
He, B., Rao, S. & Houska, C. R. (1994). A simplified procedure for obtaining relative x-ray intensities when a texture and atomic displacements are present. J. Appl. Phys. 75, 4456–4464.Google Scholar
He, B. B. & Smith, K. L. (1997). Strain and stress measurement with two-dimensional detector. Adv. X-ray Anal. 41, 501–508.Google Scholar
He, B. B. & Smith, K. L. (1998). Computer simulation of diffraction stress measurement with 2D detectors. Proceedings of 1998 SEM Spring Conference on Experimental and Applied Mechanics, Houston, USA.Google Scholar
He, B. B., Xu, K., Wang, F. & Huang, P. (2005). Two-dimensional X-ray diffraction for structure and stress analysis. Mater. Sci. Forum, 490–491, 1–6.Google Scholar
Helming, K., Lyubchenko, M., He, B. & Preckwinkel, U. (2003). A new method for texture measurements using a general area detector diffraction system. Powder Diffr. 18, 99–102.Google Scholar
Hinrichsen, B. (2007). Two-dimensional X-ray powder diffraction. PhD dissertation, University of Stuttgart, Germany.Google Scholar
Jabeen, S., Raza, S. M., Ahmed, M. A., Zai, M. Y. & Erlacher, K. (2011). Two dimensional X-ray diffraction (2D-XRD) studies on olivine of U. S. A. J. Chem. Soc. Pak. 33(5), 612–618.Google Scholar
James, M. R. & Cohen, J. B. (1980). The measurement of residual stresses by x-ray diffraction techniques. Treatise on Materials Science and Technology, 19A, edited by H. Herman. New York: Academic Press.Google Scholar
Jenkins, R. & Snyder, R. L. (1996). Introduction to X-ray Powder Diffractometry. New York: John Wiley & Sons.Google Scholar
Kämpfe, A., Kämpfe, B., Goldenbogen, S., Eigenmann, B., Macherauch, E. & Löhe, D. (1999). X-ray stress analysis on polycrystalline materials using two-dimensional detectors. Adv. X-ray Anal. 43, 54–65.Google Scholar
Kasai, N. & Kakudo, M. (2005). X-ray Diffraction by Macromolecules, pp. 393–417. Tokyo: Kodansha/Springer.Google Scholar
Kerr, K. A. & Ashmore, J. P. (1974). Systematic errors in polarization corrections for crystal-monochromatized radiation. Acta Cryst. A30, 176–179.Google Scholar
Khazins, D. M., Becker, B. L., Diawara, Y., Durst, R. D., He, B. B., Medved, S. A., Sedov, V. & Thorson, T. A. (2004). A parallel-plate resistive-anode gaseous detector for X-ray imaging. IEEE Trans. Nucl. Sci. 51, 943–947.Google Scholar
Klein, J., Lehmann, C. W., Schmidt, H.-W. & Maier, W. F. (1998). Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed. 37, 3369–3372.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley & Sons.Google Scholar
Korhonen, M. A., Lindroos, V. K. & Suominen, L. S. (1989). Application of a new solid state x-ray camera to stress measurement. Adv. X-ray Anal. 32, 407–413.Google Scholar
Krause, K. L. & Phillips, G. N. (1992). Experience with commercial area detectors: a `buyer's' perspective. J. Appl. Cryst. 25, 146–154.Google Scholar
Kugler, W. (2003). X-ray diffraction analysis in the forensic science: the last resort in many criminal cases. Adv. X-ray Anal. 46, 1–16.Google Scholar
Lewis, R. (1994). Multiwire gas proportional counters: decrepit antiques or classic performers? J. Synchrotron Rad. 1, 43–53.Google Scholar
Lu, J. (1996). Handbook of Measurement of Residual Stress. Society for Experimental Mechanics. Lilburn: The Fairmont Press.Google Scholar
Lutz, G. (2006). Silicon drift and pixel devices for X-ray imaging and spectroscopy. J. Synchrotron Rad. 13, 99–109.Google Scholar
Maslen, E. N. (1992). X-ray absorption. International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 520–529. Dordrecht: Kluwer Academic Publishers.Google Scholar
Moy, J. P., Hammersley, A. P., Svensson, S. O., Thompson, A., Brown, K., Claustre, L., Gonzalez, A. & McSweeney, S. (1996). A novel technique for accurate intensity calibration of area X-ray detectors at almost arbitrary energy. J. Synchrotron Rad. 3, 1–5.Google Scholar
Mudie, S. T., Pavlov, K. M., Morgan, M. J., Hester, J. R., Tabuchi, M. & Takeda, Y. (2004). Collection of reciprocal space maps using imaging plates at the Australian National Beamline Facility at the Photon Factory. J. Synchrotron Rad. 11, 406–413.Google Scholar
Murthy, N. S. & Barton, R. Jr (2000). Polymer industry. Industrial Applications of X-ray Diffraction, edited by F. H. Chung & D. K. Smith, pp. 495–509. New York: Marcel Dekker.Google Scholar
Ning, G. & Flemming, R. L. (2005). Rietveld refinement of LaB6: data from µXRD. J. Appl. Cryst. 38, 757–759.Google Scholar
Noyan, I. C. & Cohen, J. B. (1987). Residual Stress. New York: Springer-Verlag.Google Scholar
Paciorek, W. A., Meyer, M. & Chapuis, G. (1999). On the geometry of a modern imaging diffractometer. Acta Cryst. A55, 543–557.Google Scholar
Pecharsky, V. K. & Zavalij, P. Y. (2003). Fundamentals of Powder Diffraction and Structure Characterization of Materials. Boston: Kluwer Academic Publishers.Google Scholar
Pitschke, W., Collazo, J. A. L., Hermann, H. & Hildenbrand, V. D. (1996). Absorption corrections of powder diffraction intensities recorded in transmission geometry. J. Appl. Cryst. 29, 561–567.Google Scholar
Ponchut, C. (2006). Characterization of X-ray area detectors for synchrotron beamlines. J. Synchrotron Rad. 13, 195–203.Google Scholar
Pople, J. A., Keates, P. A. & Mitchell, G. R. (1997). A two-dimensional X-ray scattering system for in-situ time-resolving studies of polymer structures subjected to controlled deformations. J. Synchrotron Rad. 4, 267–278.Google Scholar
Rodriguez-Navarro, A. B. (2006). XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Cryst. 39, 905–909.Google Scholar
Ross, C. R. (1992). Measurement of powder diffraction sample absorption coefficients using monochromated radiation and transmission geometry. J. Appl. Cryst. 25, 628–631.Google Scholar
Rowe, R. (2009). New statistical calibration approach for Bruker AXS D8 Discover microdiffractometer with Hi-Star detector using GADDS software. Powder Diffr. 24, 263–271.Google Scholar
Rudolf, P. R. & Landes, B. G. (1994). Two-dimensional X-ray diffraction and scattering of microcrystalline and polymeric materials. Spectroscopy, 9(6), 22–33.Google Scholar
Scheidegger, S., Estermann, M. A. & Steurer, W. (2000). Correction of specimen absorption in X-ray diffuse scattering experiments with area-detector systems. J. Appl. Cryst. 33, 35–48.Google Scholar
Schmidbauer, M., Schäfer, P., Besedin, S., Grigoriev, D., Köhler, R. & Hanke, M. (2008). A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction. J. Synchrotron Rad. 15, 549–557.Google Scholar
Smilgies, D.-M. & Blasini, D. R. (2007). Indexation scheme for oriented molecular thin films studied with grazing-incidence reciprocal-space mapping. J. Appl. Cryst. 40, 716–718.Google Scholar
Smith, K. L. & Ortega, R. B. (1993). Use of a two-dimensional, position sensitive detector for collecting pole figures. Adv. X-ray Anal. 36, 641–647.Google Scholar
Sprauel, J. M. & Michaud, H. (2002). Global X-ray method for the determination of stress profiles. Mater. Sci. Forum, 404–407, 19–24.Google Scholar
Stanton, M., Phillips, W. C., Li, Y. & Kalata, K. (1992). Correcting spatial distortions and nonuniform response in area detectors. J. Appl. Cryst. 25, 549–558.Google Scholar
Sulyanov, S. N., Popov, A. N. & Kheiker, D. M. (1994). Using a two-dimensional detector for X-ray powder diffractometry. J. Appl. Cryst. 27, 934–942.Google Scholar
Tate, M. W., Eikenberry, E. F., Barna, S. L., Wall, M. E., Lowrance, J. L. & Gruner, S. M. (1995). A large-format high-resolution area X-ray detector based on a fiber-optically bonded charge-coupled device (CCD). J. Appl. Cryst. 28, 196–205.Google Scholar
Tissot, R. G. (2003). Microdiffraction applications utilizing a two-dimensional proportional detector. Powder Diffr. 18, 86–90.Google Scholar
Ungár, T. (2000). Warren–Averbach applications. Industrial Applications of X-ray Diffraction, edited by F. H. Chung & D. K. Smith, pp. 847–867. New York: Marcel Dekker.Google Scholar
Walter, N. M. (1971). Residual Stress Measurement by X-ray Diffraction – SAE J784a. Society of Automotive Engineering.Google Scholar
Warren, B. E. (1990). X-ray Diffraction. New York: Dover Publications.Google Scholar
Wenk, H.-R. & Grigull, S. (2003). Synchrotron texture analysis with area detectors. J. Appl. Cryst. 36, 1040–1049.Google Scholar
Westbrook, E. M. (1999). Performance characteristics needed for protein crystal diffraction X-ray detectors. Proc. SPIE, 3774, 2–16.Google Scholar
Wiesmann, J., Graf, J., Hoffmann, C. & Michaelsen, C. (2007). New possibilities for x-ray diffractometry. Physics meets Industry, edited by J. Gegner & F. Haider. Renningen: ExpertVerlag. ISBN 978-3-8169-2740-2.Google Scholar
Wilson, A. J. C. (1971). Some further considerations in particle-size broadening. J. Appl. Cryst. 4, 440–443.Google Scholar
Winter, D. J. & Squires, B. A. (1995). A new approach in performing microdiffraction analysis. Adv. X-ray Anal. 38, 551–556.Google Scholar
Yagi, N. & Inoue, K. (2007). CMOS flatpanel detectors for SAXS/WAXS experiments. J. Appl. Cryst. 40, s439–s441.Google Scholar
Yoshioka, Y. & Ohya, S. (1992). X-ray analysis of stress in a localized area by use of image plate. Adv. X-ray Anal. 35, 537–543.Google Scholar
Zuev, A. D. (2006). Calculation of the instrumental function in X-ray powder diffraction. J. Appl. Cryst. 39, 304–314.Google Scholar