International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.5, pp. 131-132

Section 2.5.3.3.5. Air scatter

B. B. Hea*

aBruker AXS Inc., 5465 E. Cheryl Parkway, Madison, WI 53711, USA
Correspondence e-mail: bob.he@bruker.com

2.5.3.3.5. Air scatter

| top | pdf |

X-rays are scattered by air molecules in the beam path between the X-ray source and detector. Air scatter results in two effects: one is the attenuation of the X-ray intensity, the other is added background in the diffraction pattern. Air scatter within the enclosed primary beam path – for instance, in the mirror, monochromator housing or collimator – results in attenuation of only the incident beam. The enclosed beam path can be purged by helium gas or kept in vacuum to reduce the attenuation so that no correction is necessary for this part of the air scatter. The open beam between the tip of the collimator and the sample generates an air-scatter background pattern, which is the major part of the air scatter. In the secondary beam path, the air scatter from the diffracted beam may generate background too, but the main effect of the air scatter is inhomogeneous attenuation of the diffraction pattern due to the different beam path lengths between the centre and the edge of the detector.

The background generated by air scattering from the open incident-beam path has a strong 2θ dependence. The specific scattering curve depends on the length of the open primary beam path, the beam size and the wavelength of the incident beam. There are two approaches to correct air scatter. One is to collect an air-scatter background frame under the same conditions as the diffraction frame except without a sample. The background frame is then subtracted from the diffraction frame. Another approach is to remove the background from the integrated profile, since the background is 2θ dependent.

The attenuation of the diffracted beam by air absorption depends on the distance between the sample and pixel. For a flat detector, air absorption can be corrected by[{p_c}(x,y) = {p_o}(x,y) \exp \left[{{\mu _{\rm air}}({{D^2} + {x^2} + {y^2}})^{1/2} } \right],\eqno(2.5.30)]where po(x, y) is the original pixel intensity of the pixel P(x, y) and pc(x, y) is the corrected intensity. The detector centre is given by (0, 0). μair is the linear absorption coefficient of air. The value of μair is determined by the radiation wavelength. By approximation, for air with 80% N2 and 20% O2 at sea level and at 293 K, μair = 0.01 cm−1 for Cu Kα radiation. Air scatter and absorption increases with increasing wavelength. For example, μair = 0.015 cm−1 for Co Kα radiation and 0.032 cm−1 for Cr Kα radiation. The absorption coefficient for Mo Kα radiation, μair = 0.001 cm−1, is only one-tenth of that for Cu Kα radiation, so an air-absorption correction is not necessary. Alternatively, the absorption correction may be normalized to the absorption level in the beam centre as[{p_c}(x,y) = {p_o}(x,y) \exp \left \{{{\mu _{\rm air}}\left[({D^2} + {x^2} + {y^2})^{1/2} - D\right]} \right\}.\eqno(2.5.31)]In this normalized correction the attenuation by air scatter is not fully corrected for each pixel, but rather corrected to the same attenuation level as the pixel in the detector centre. This means that the effect of path-length differences between the detector centre pixel and other pixels are eliminated.








































to end of page
to top of page