International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.6, pp. 150-155
https://doi.org/10.1107/97809553602060000941

Chapter 2.6. Non-ambient-temperature powder diffraction

C. A. Reissa*

aNoordikslaan 51, 7602 CC Almelo, The Netherlands
Correspondence e-mail: Celeste.Reiss@PANalytical.com

References

Angelkort, J., Apostolov, Z. D., Jones, Z. A., Letourneau, S. & Kriven, W. M. (2013). Thermal properties and phase transition of 2ZrO2·P2O5 studied by in situ synchrotron X-ray diffraction. J. Am. Ceram. Soc. 96, 1292–1299.Google Scholar
Brown, C., Copley, J. & Qiu, Y. (2005). The orientational order/disorder transition in buckminsterfullerene (C60): an experiment using the NCNR Disk Chopper Spectrometer. Gaithersburg: NIST Center for Neutron Research. https://www.ncnr.nist.gov/summerschool/ss05/C60_EXPT_05.pdf . Google Scholar
Butté, R., et al. (2007). Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D Appl. Phys. 40, 6328–6344.Google Scholar
Cosier, J. & Glazer, A. M. (1986). A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Cryst. 19, 105–107.Google Scholar
Daillant, J. & Gibaud, A. (2009). Editors. X-ray and Neutron Reflectivity: Principles and Applications. Berlin, Heidelberg: Springer.Google Scholar
Drews, A. R. (2001). Calibration of a high temperature X-ray diffraction stage by differential thermal expansion. Adv. X-ray Anal. 44, 44–49.Google Scholar
Egami, T. & Billinge, S. J. L. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Oxford: Pergamon.Google Scholar
Grieger, L., Kharchenko, L., Heuken, M. & Woitok, J. F. (2013). 15th European Workshop on Metalorganic Vapour Phase Epitaxy (EWMOVPE XV), Extended abstracts, pp. 51–54. Jülich: Forschungszentrum Jülich. Google Scholar
Kelekci, O., Tasli, P., Cetin, S. S., Kasap, M., Ozcelik, S. & Ozbay, E. (2012). Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD. Curr. Appl. Phys. 12, 1600–1605.Google Scholar
Norby, P. & Schwarz, U. (2008). Powder Diffraction: Theory and Practice, edited by R. E. Dinnerbier & S. J. L. Billinge, pp. 439–463. Cambridge: Royal Society of Chemistry.Google Scholar
Odler, I. (2000). Special Inorganic Cements. London: CRC Press.Google Scholar
Potter, J., Parker, J. E., Lennie, A. R., Thompson, S. P. & Tang, C. C. (2013). Low-temperature Debye–Scherrer powder diffraction on Beamline I11 at Diamond. J. Appl. Cryst. 46, 826–828.Google Scholar
Reiss, C. A., Kharchenko, A. & Gateshki, M. (2012). On the use of laboratory X-ray diffraction equipment for pair distribution function (PDF) studies. Z. Kristallogr. 227, 256–261.Google Scholar
Sarin, P., Yoon, W., Jurkschat, K., Zschack, P. & Kriven, W. M. (2006). Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder X-ray diffraction studies in air in reflection geometry. Rev. Sci. Instrum. 77, 092906.Google Scholar
Teke, A., Gökden, S., Tülek, R., Leach, J. H., Fan, Q., Xie, J., Özgür, Ü., Morkoç, H., Lisesivdin, S. B. & Özbay, E. (2009). The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures. New J. Phys. 11, 063031.Google Scholar
Weast, R. C. (1980). CRC Handbook of Chemistry and Physics, 61st ed. Boca Raton: CRC Press.Google Scholar