The sample can be either contained in a capsule or mixed with a pressure-transmitting pseudo-hydrostatic medium, which is inert and a weak absorber of X-rays. The sample is accessed by the X-ray beam between the anvils through a weakly absorbing sealing material, such as amorphous boron, magnesium oxide, corundum or pyrophyllite. Like the opposed-anvil presses, multi-anvil LVPs can be used effectively for X-ray diffraction at synchrotrons and neutron sources. However, these large installations also require (apart from intense primary beams) powerful translations for their precise centring relative to the primary beam and diffractometer axes. The main advantage of an LVP is that the incident beam enters the pressure chamber through one diamond anvil and the reflections leave it through the other anvil; this mode of operation is often referred to as transmission geometry. Together with the diamond anvils, Be discs constitute windows for the X-rays. However, beryllium has several disadvantages. It is the softest and weakest of the materials used in DAC construction, it softens at about 470 K, beryllium oxide is poisonous, and machining beryllium is difficult and expensive. Therefore, except for the pioneering DAC design by Weir et al. (1959), Be parts were initially limited to disc supports for the anvils. Moreover, polycrystalline Be discs produce broad reflection rings and a strong background, and the small central hole in the disc obscured optical observation of the sample. In many modern DACs the beryllium discs have been completely eliminated, and the diamond anvils are directly supported by steel or tungsten carbide platelets (Konno et al., 1989; Ashbahs, 2004; Boehler & De Hantsetters, 2004; Katrusiak, 2008). For this purpose new diamond anvils, exemplified in Fig. 2.7.4, were designed. Anvils of different sizes, culet dimensions, height-to-diameter ratios and other dimensions can be adjusted for the experimental requirements, such as the planned pressure range and the opening angles of the access windows.

Another DAC was independently designed for X-ray powder diffraction by Jamieson et al. (1959). In their DAC, the incident beam was perpendicular to the axis through the opposed anvils, and the primary beam passed along the sample contained and squeezed directly (no gasket was used) between the culets. The reflections were recorded on photographic film located on the other side of the DAC, perpendicular to the incident beam. This geometry was described as either panoramic, perpendicular or transverse. The transverse geometry is also used with beryllium or other weakly absorbing gaskets (Mao et al., 1998). Other DACs, for example where both the incident beam and the reflections pass through one diamond anvil, were also designed (Denner et al., 1978; Malinowski, 1987); however, the transmission geometry is most common owing to its advantages. In the transmission geometry the uniaxial support of the anvils leaves a window for optical observation of the sample, as well as for spectroscopic and diffractometric experiments along the cylindrical pressure chamber. Therefore, at present most DAC designs operate in transmission geometry.

The DAC construction can generally be described as a small vice generating thrust between opposed anvils. In the first DACs designed in the late 1950s, no gasket nor hydrostatic fluids were used and the sample was exposed to strong anisotropic stresses. Van Valkenburg (1962) enclosed the sample in a hole in a metal gasket, filled the hole with hydrostatic fluid and sealed it between the culets of the anvils. This most significant development of the miniature high-pressure chamber opened new possibilities for all sorts of studies under hydrostatic conditions, in particular powder and single-crystal diffraction studies. Since then, the gaskets have become an intrinsic part of the DAC. The hydrostatic conditions in the DAC have been used to grow in situ single crystals from the melts of neat compounds (Fourme, 1968; Piermarini et al., 1969) and from solutions (Van Valkenburg et al., 1971a,b). Now it is a common method for in situ crystallization under isothermal and isochoric conditions (Dziubek & Katrusiak, 2004; Bujak et al.,...