Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.7, pp. 156-173

Chapter 2.7. High-pressure devices

A. Katrusiaka*

aFaculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
Correspondence e-mail:


Abrahams, S. C., Collin, R. L., Lipscomb, W. N. & Reed, T. B. (1950). Further techniques in single-crystal X-ray diffraction studies at low temperatures. Rev. Sci. Instrum. 21, 396–397.Google Scholar
Adams, D. M. & Christy, A. G. (1992). Materials for high-temperature diamond-anvil cells. High Press. Res. 8, 685–689.Google Scholar
Ahrens, T. J. (1980). Dynamic compression of Earth materials. Science, 207, 1035–1041.Google Scholar
Ahrens, T. J. (1987). Shock wave techniques for geophysics and planetary physics. In Methods of Experimental Physics, Vol. 24A, edited by C. G. Sammis & T. L. Henyey, pp. 185–235. New York: Academic Press.Google Scholar
Ahsbahs, H. (2004). New pressure cell for single-crystal X-ray investigations on diffractometers with area detectors. Z. Kristallogr. 219, 305–308.Google Scholar
Akahama, Y., Hirao, N., Ohishi, Y. & Singh, A. K. (2014). Equation of state of bcc-Mo by static volume compression to 410 GPa. J. Appl. Phys. 116, 223504.Google Scholar
Akahama, Y. & Kawamura, H. (2004). High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J. Appl. Phys. 96, 3748–3751.Google Scholar
Akahama, Y. & Kawamura, H. (2010). Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. Conf. Ser. 215, 012195.Google Scholar
Akimoto, S., Suzuki, T., Yagi, T. & Shimomura, O. (1987). Phase diagram of iron determined by high-pressure/temperature X-ray diffraction using synchrotron radiation. In High-Pressure Research in Mineral Physics, Geophysics Monograph Series, Vol. 39, edited by M. H. Manghnani & Y. Syono, pp. 149–154. Washington, DC: AGU.Google Scholar
Alireza, P. L. & Lonzarich, G. G. (2009). Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer. Rev. Sci. Instrum. 80, 023906.Google Scholar
Allan, D. R. & Clark, S. J. (1999). Impeded dimer formation in the high-pressure crystal structure of formic acid. Phys. Rev. Lett. 82, 3464–3467.Google Scholar
Andrzejewski, M. & Katrusiak, A. (2017a). Piezochromic porous metal–organic framework. J. Phys. Chem. Lett. 8, 279–284.Google Scholar
Andrzejewski, M. &. Katrusiak, A. (2017b). Piezochromic topology switch in a coordination polymer. J. Phys. Chem. Lett. 8, 929–935.Google Scholar
Andrzejewski, M., Olejniczak, A. & Katrusiak, A. (2011). Humidity control of isostructural dehydration and pressure-induced polymorphism in 1,4-diazabicyclo[2.2.2]octane dihydrobromide mono­hydrate. Cryst. Growth Des. 11, 4892–4899.Google Scholar
Angel, R. J. (2004). Absorption corrections for diamond-anvil pressure cells implemented in the software package Absorb6.0. J. Appl. Cryst. 37, 486–492.Google Scholar
Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D. & Jacobsen, S. D. (2007). Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Cryst. 40, 26–32.Google Scholar
Bacon, G. E. (1975). Neutron Diffraction. Oxford University Press.Google Scholar
Baranowski, B. & Bujnowski, W. (1970). A device for generation of hydrogen pressure to 25000 at. Ann. Soc. Chim. Polonarum, 44, 2271–2273.Google Scholar
Barnett, J. D., Block, S. & Piermarini, G. J. (1973). An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell. Rev. Sci. Instrum. 44, 1–9.Google Scholar
Bassett, W. A. (2001). The birth and development of laser heating in diamond anvil cells. Rev. Sci. Instrum. 72, 1270–1272.Google Scholar
Bassett, W. A. (2009). Diamond anvil cell, 50th birthday. High Press. Res. 29, 163–186.Google Scholar
Bassett, W. A., Shen, A. H., Bucknum, M. & Chou, I.-M. (1993). A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from −190 to 1200°C. Rev. Sci. Instrum. 64, 2340–2345.Google Scholar
Bassett, W. A. & Takahashi, T. (1965). Silver iodide polymorphs. Am. Mineral. 50, 1576–1594.Google Scholar
Batsanov, S. S. (2004). Solid phase transformations under high dynamic pressure. In High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 353–366. Dordrecht: Kluwer.Google Scholar
Baublitz, M. A., Arnold, V. & Ruoff, A. L. (1981). Energy dispersive X-ray diffraction from high pressure polycrystalline specimens using synchrotron radiation. Rev. Sci. Instrum. 52, 1616–1624.Google Scholar
Bell, P. M. & Mao, H.-K. (1981). Degree of hydrostaticity in He, Ne, and Ar pressure-transmitting media. Carnegie Inst. Washington Yearb. 80, 404–406.Google Scholar
Bell, P. M., Xu, J. A. & Mao, H.-K. (1986). Static compression of gold and copper and calibration of the ruby pressure scale to pressures to 1.8 megabars. In Shock Waves in Condensed Matter, edited by Y. M. Gupta, pp. 125–130. New York: Plenum Press.Google Scholar
Besson, J. M. (1997). Pressure generation. In High-Pressure Techniques in Chemistry and Physics. A Practical Approach, edited by W. B. Holzapfel & N. S. Isaacs, pp. 1–45. Oxford University Press.Google Scholar
Besson, J. M., Nelmes, R. J., Hamel, G., Loveday, J. S., Weill, G. & Hull, S. (1992). Neutron powder diffraction above 10 GPa. Physica B, 180–181, 907–910.Google Scholar
Binns, J., Kamenev, K. V., McIntyre, G. J., Moggach, S. A. & Parsons, S. (2016). Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction. IUCrJ, 3, 168–179.Google Scholar
Blaschko, O. & Ernst, G. (1974). Autofrettaged high pressure chamber for use in inelastic neutron scattering. Rev. Sci. Instrum. 45, 526–528.Google Scholar
Bloch, D., Paureau, J., Voiron, J. & Parisot, G. (1976). Neutron scattering at high pressure. Rev. Sci. Instrum. 47, 296–298.Google Scholar
Boehler, R. & De Hantsetters, K. (2004). New anvil designs in diamond-cells. High Press. Res. 24, 391–396.Google Scholar
Boehler, R., Nicol, M., Zha, C. S. & Jonson, M. L. (1986). Resistance heating of Fe and W in diamond anvil cells. Physica B, 139–140, 916–918.Google Scholar
Boehler, R., Ross, M. P. & Boercker, D. B. (2001). High-pressure melting curves of argon, krypton, and xenon: deviation from corresponding states theory. Phys. Rev. Lett. 86, 5731–5734.Google Scholar
Boldyreva, E. V. (2010). High-pressure studies of pharmaceuticals and biomimetics. Fundamentals and applications. A general introduction. In High-Pressure Crystallography. From Fundamental Phenomena to Technological Applications, edited by E. Boldyreva & P. Dera, pp. 533–543. Dordrecht: Springer.Google Scholar
Boldyreva, E. V. & Dera, P. (2010). Editors. High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Dordrecht: Springer.Google Scholar
Boldyreva, E. V., Dmitriev, V. P. & Hancock, B. C. (2006). Effect of pressure up to 5.5 GPa on dry powder samples of chlorpropamide form-A. Int. J. Pharm. 327, 51–57.Google Scholar
Boldyreva, E. V., Shakhtshneider, T. P., Ahsbahs, H., Sowa, H. & Uchtmann, H. (2002). Effect of high pressure on the polymorphs of paracetamol. J. Therm. Anal. Cal. 68, 437–452.Google Scholar
Bridgman, P. W. (1914). The coagulation of albumen by pressure. J. Biol. Chem. 19, 511–512.Google Scholar
Bridgman, P. W. (1935). Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48, 825–847.Google Scholar
Bridgman, P. W. (1941). Explorations toward the limit of utilizable pressures. J. Appl. Phys. 12, 461–469.Google Scholar
Bridgman, P. W. (1952). The resistance of 72 elements, alloys and compounds to 100,000 kg/cm2. Proc. Am. Acad. Arts Sci. 81, 167–251.Google Scholar
Bridgman, P. W. (1964). Collected Experimental Papers, Volumes I–VII. Cambridge, MA: Harvard University Press.Google Scholar
Brister, K. E., Vohra, Y. K. & Ruoff, A. L. (1986). Microcollimated energy-dispersive X-ray diffraction apparatus for studies at megabar pressures with a synchrotron source. Rev. Sci. Instrum. 57, 2560–2563.Google Scholar
Budzianowski, A. & Katrusiak, A. (2004). High-pressure crystallographic experiments with a CCD detector. In High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101–112. Dordrecht: Kluwer.Google Scholar
Budzianowski, A. & Katrusiak, A. (2006a). Pressure tuning between NH...N hydrogen-bonded ice analogue and NH...Br polar dabcoHBr complexes. J. Phys. Chem. B, 110, 9755–9758.Google Scholar
Budzianowski, A. & Katrusiak, A. (2006b). Pressure-frozen benzene I revisited. Acta Cryst. B62, 94–101.Google Scholar
Bujak, M., Budzianowski, A. & Katrusiak, A. (2004). High-pressure in-situ crystallization, structure and phase transitions in 1,2-dichloro­ethane. Z. Kristallogr. 219, 573–579.Google Scholar
Bujak, M., Podsiadło, M. & Katrusiak, A. (2008). Energetics of conformational conversion between 1,1,2-trichloroethane polymorphs. Chem. Commun. pp. 4439–4441.Google Scholar
Buras, B., Olsen, J. S. & Gerward, L. (1977). White beam, X-ray, energy-dispersive diffractometry using synchrotron radiation. Nucl. Instrum. Methods, 152, 293–296.Google Scholar
Buras, B., Olsen, J. S., Gerward, L., Will, G. & Hinze, E. (1977). X-ray energy-dispersive diffractometry using synchrotron radiation. J. Appl. Cryst. 10, 431–438.Google Scholar
Bureau, H., Burchard, M., Kubsky, S., Henry, S., Gonde, C., Zaitsev, A. & Meijer, J. (2006). Intelligent anvils applied to experimental investigations: state of the art. High Press. Res. 26, 251–265.Google Scholar
Busing, W. R. & Levy, H. A. (1967). Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Cryst. 22, 457–464.Google Scholar
Chervin, J. C., Canny, B., Besson, J. M. & Pruzan, Ph. (1995). A diamond anvil cell for IR microspectroscopy. Rev. Sci. Instrum. 66, 2595–2598.Google Scholar
Chervin, J. C., Canny, B. & Mancinelli, M. (2001). Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Press. Res. 21, 305–314.Google Scholar
Cohen, W. M. (1933). X-ray investigations at high pressures. Phys. Rev. 44, 326–327.Google Scholar
Couzinet, B., Dahan, N., Hamel, G. & Chervin, J.-C. (2003). Optically monitored high-pressure gas loading apparatus for diamond anvil cells. High Press. Res. 23, 409–415.Google Scholar
Crichton, W. A. & Mezouar, M. (2004). Methods and application of the Paris–Edinburgh press to X-ray diffraction structure solution with large-volume samples at high pressures and temperatures. In Advances in High-Pressure Technology for Geophysical Applications, edited by J. Chen, Y. Wang, T. S. Duffy, G. Shen & L. F. Dobrzhinetskaya, pp. 353–369. Amsterdam: Elsevier.Google Scholar
Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. (2016). Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature, 529, 63–67.Google Scholar
Datchi, F., LeToullec, R. & Loubeyre, P. (1997). Improved calibration of the SrB4O7:Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures. J. Appl. Phys. 81, 3333–3339.Google Scholar
Denner, W., Schulz, H. & d'Amour, H. (1978). A new measuring procedure for data collection with a high-pressure cell on an X-ray four-circle diffractometer. J. Appl. Cryst. 11, 260–264.Google Scholar
Dera, P. & Katrusiak, A. (1999). Diffractometric crystal centering. J. Appl. Cryst. 32, 510–515.Google Scholar
Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M. L., Finkelstein, G. F., Grubor-Urosevic, O., Tschauner, O., Clark, S. M. & Downs, R. T. (2013). High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press. Res. 33, 466–484.Google Scholar
Dewaele, A. & Loubeyre, P. (2007). Pressurizing conditions in helium-pressure-transmitting medium. High. Press. Res. 27, 419–429.Google Scholar
Dewaele, A., Loubeyre, P., Florent Occelli, F., Marie O. & Mezouar, M. (2018). Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9, 2913.Google Scholar
Dinga, Y., Xu, J., Prewitt, Ch. T., Hemley, R. J., Mao, H., Cowan, J. A., Zhang, J., Qian, J., Vogel, S. C., Lokshin, K. & Zhao, Y. (2005). Variable pressure–temperature neutron diffraction of wüstite, Fe1−xO: absence of long-range magnetic order to 20 GPa. Appl. Phys. Lett. 86, 052505.Google Scholar
Dorfman, S. M., Jiang, F., Mao, Z., Kubo, A., Meng, Y., Prakapenka, V. B. & Duffy, T. S. (2010). Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures. Phys. Rev. B, 81, 174121.Google Scholar
Dorfman, S. M., Prakapenka, V. B., Meng, Y. & Duffy, T. S. (2012). Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. J. Geophys. Res. 117, B08210.Google Scholar
Dorogokupets, P. I. & Dewaele, A. (2007). Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press. Res. 27, 431–446.Google Scholar
Dubrovinskaia, N. & Dubrovinsky, L. S. (2003). Whole-cell heater for the diamond anvil cell. Rev. Sci. Instrum. 74, 3433–3437.Google Scholar
Dubrovinskaia, N., Dubrovinsky, L., Solopova, N. A., Abakumov, A., Turner, S., Hanfland, M., Bykova, E., Bykov, M., Prescher, C., Prakapenka, V. B., Petitgirard, S., Chuvashova, I., Gasharova, B., Mathis, Y.-L., Ershov, P., Snigireva, I. & Snigirev, A. (2016). Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341.Google Scholar
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. (2012). Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163.Google Scholar
Dubrovinsky, L. S., Saxena, S. K. & Lazor, P. (1998). High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell. Phys. Chem. Miner. 25, 434–441.Google Scholar
Dziubek, K. & Katrusiak, A. (2002). Structural refinements on restricted intensity data collected in high-pressure diffraction experiments. Defect Diffus. Forum, 208–209, 319–322.Google Scholar
Dziubek, K. F. & Katrusiak, A. (2004). Compression of intermolecular interactions in CS2 crystal. J. Phys. Chem. B, 108, 19089–19092.Google Scholar
Dziubek, K. F. & Katrusiak, A. (2014). Complementing diffraction data with volumetric measurements. Z. Kristallogr. 229, 129–134.Google Scholar
Dziubek, K., Podsiadło, M. & Katrusiak, A. (2007). Nearly isostructural polymorphs of ethynylbenzene: resolution of [triple bond]CH...π(arene) and cooperative [triple bond]CH...π(C[triple bond]C) interactions by pressure freezing. J. Am. Chem. Soc. 129, 12620–12621.Google Scholar
Eggert, J. H., Xu, L. W., Che, R. Z., Chen, L. C. & Wang, J. F. (1992). High pressure refractive-index measurements of 4/1 methanol–ethanol. J. Appl. Phys. 72, 2453–2461.Google Scholar
Eremets, M. (1996). High Pressure Experimental Methods. New York: Oxford University Press.Google Scholar
Fabbiani, F. P. A. (2010). New frontiers in physical form discovery: high-pressure recrystallization of pharmaceutical and other molecular compounds. In High-Pressure Crystallography. From Fundamental Phenomena to Technological Applications, edited by E. Boldyreva & P. Dera, pp. 545–558. Dordrecht: Springer.Google Scholar
Fabbiani, F. P. A., Allan, D. R., David, W. I. F., Moggach, S. A., Parsons, S. & Pulham, C. R. (2004). High-pressure recrystallization – a route to new polymorphs and solvates. CrystEngComm, 6, 504–511.Google Scholar
Fabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2005). An exploration of the polymorphism of piracetam using high pressure. CrystEngComm, 7, 179–186.Google Scholar
Fabbiani, F. P. A., Dittrich, B., Florence, A. J., Gelbrich, T., Hursthouse, M. B., Kuhs, W. F., Shankland, N. & Sowa, H. (2009). Crystal structures with a challenge: high-pressure crystallisation of ciprofloxacin sodium salts and their recovery to ambient pressure. CrystEngComm, 11, 1396–1406.Google Scholar
Fabbiani, F. P. A. & Pulham, C. R. (2006). High-pressure studies of pharmaceutical compounds and energetic materials. Chem. Soc. Rev. 35, 932–942.Google Scholar
Fei, Y. & Wang, Y. (2000). High-pressure and high-temperature powder diffraction. Rev. Mineral. Geochem. 41, 521–557.Google Scholar
Filinchuk, Y. (2010). Light metal hydrates under non-ambient conditions: probing chemistry by diffraction? In High-Pressure Crystallography. From Fundamental Phenomena to Technological Applications, edited by E. Boldyreva & P. Dera, pp. 281–291. Dordrecht: Springer.Google Scholar
Finger, L. W. & King, H. E. (1978). A revised method of operation of the single-crystal diamond cell and refinement of the structure of NaCl at 32 kbar. Am. Mineral. 63, 337–342.Google Scholar
Fiquet, G. & Andrault, D. (1999). Powder X-ray diffraction under extreme conditions of pressure and temperature. J. Synchrotron Rad. 6, 81–86.Google Scholar
Forman, R. A., Piermarini, G. J., Barnett, J. D. & Block, S. (1972). Pressure measurement made by the utilization of ruby sharp-line luminescence. Science, 176, 284–285.Google Scholar
Fourme, R. (1968). Appareillage pour études radiocristallographiques sous pression et à température variable. J. Appl. Cryst. 1, 23–30.Google Scholar
Fourme, R. E., Girard, R., Kahn, I., Ascone, M., Mezouar, T., Lin, J. E. & Johnson (2004). State of the art and prospects of macromolecular X-ray crystallography at high hydrostatic pressure. In High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 527–542. Dordrecht: Kluwer.Google Scholar
Gajda, R. & Katrusiak, A. (2009). Electrostatic matching versus close-packing molecular arrangement in compressed dimethyl sulfoxide (DMSO) polymorphs. J. Phys. Chem. B, 113, 2436–2442.Google Scholar
Gao, R. & Li, H. (2012). Pressure measurement using the R fluorescence peaks and 417 cm−1 Raman peak of an anvil in a sapphire-anvil cell. High Press. Res. 32, 176–185. Google Scholar
Giriat, G., Wang, W., Attfield, J. P., Huxley, A. D. & Kamenev, K. V. (2010). Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer. Rev. Sci. Instrum. 81, 073905.Google Scholar
Goncharenko, I. N. (2004). Magnetic properties of crystals and their studies at high pressure conditions. In High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 321–340. Dordrecht: Kluwer.Google Scholar
Goncharenko, I. N. (2006). Magnetic and crystal structures probed by neutrons in 40 GPa pressure range. Acta Cryst. A62, s95.Google Scholar
Goncharenko, I. & Loubeyre, P. (2005). Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature, 435, 1206–1209. Google Scholar
Goncharenko, I. N., Mignot, J.-M., Andre, G., Lavrova, O. A., Mirebeau, I. & Somenkov, V. A. (1995). Neutron diffraction studies of magnetic structure and phase transitions at very high pressures. High Press. Res. 14, 41–53.Google Scholar
Goncharenko, I. N. & Mirebeau, I. (1998). Magnetic neutron diffraction under very high pressures. Study of europium monochalcogenides. Rev. High Press. Sci. Technol. 7, 475–480.Google Scholar
Graf, D. E., Stillwell, R. L., Purcell, K. M. & Tozer, S. W. (2011). Nonmetallic gasket and miniature plastic turnbuckle diamond anvil cell for pulsed magnetic field studies at cryogenic temperatures. High Press. Res. 31, 533–543.Google Scholar
Grocholski, B. & Jeanloz, R. (2005). High-pressure and -temperature viscosity measurements of methanol and 4:1 methanol:ethanol solution. J. Chem. Phys. 123, 204503.Google Scholar
Gruner, S. M. (2004). Soft materials and biomaterials under pressure. In High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 543–556. Dordrecht: Kluwer.Google Scholar
Grzechnik, A., Meven, M. & Friese, K. (2018). Single-crystal neutron diffraction in diamond anvil cells with hot neutrons. J. Appl. Cryst. 51, 351–356.Google Scholar
Guńka, P. A., Dziubek, K. F., Gładysiak, A., Dranka, M., Piechota, J., Hanfland, M., Katrusiak, A. & Zachara, J. (2015). Compressed arsenolite As4O6 and its helium clathrate As4O62He. Cryst. Growth Des. 15, 3740–3745.Google Scholar
Hall, H. T. (1980). High pressure techniques. In Chemical Experimentation under Extreme Conditions, Techniques of Chemistry, Vol. IX, ch. II, edited by A. Weissberger & B. Rossiter, pp. 9–72. Chichester: John Wiley & Sons.Google Scholar
Hamilton, W. C. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 273–284. Birmingham: Kynoch Press.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hauessermann, D. (1996). Two-dimensional detector systems. From real detector to idealised image of two-theta scan. High Press. Res. 14, 235–248.Google Scholar
Hanfland, M., Proctor, J. E., Guillaume, Ch. L., Degtyareva, O. & Gregoryanz, E. (2011). High-pressure synthesis, amorphization, and decomposition of silane. Phys. Rev. Lett. 106, 095503.Google Scholar
Hazen, R. M. (1999). The Diamond Makers. Cambridge Unversity Press.Google Scholar
Hazen, R. M. & Finger, L. (1982). Comparative Crystal Chemistry. New York: John Wiley & Sons.Google Scholar
Holzapfel, W. B. (1991). Equations of state for strong compression. High. Press. Res. 7, 290–292.Google Scholar
Holzapfel, W. B. (1994). Approximate equations of state for solids from limited data sets. J. Phys. Chem. Solids, 55, 711–719.Google Scholar
Holzapfel, W. B. (1997). Pressure determination. In High-Pressure Techniques in Chemistry and Physics. A Practical Approach, edited by W. B. Holzapfel & N. S. Isaacs, pp. 47–55. Oxford University Press. Google Scholar
Huppertz, H. (2004). Multianvil high-pressure/high-temperature synthesis in solid state chemistry. Z. Kristallogr. 219, 330–338.Google Scholar
Ivanov, A. N., Nikolaev, N. A., Pashkin, N. V., Savenko, B. N., Smirnov, L. S. & Taran, Y. V. (1995). Ceramic high pressure cell with profiled anvils for neutron diffraction investigations (up to 7 GPa). High-Press. Res. 14, 203–208.Google Scholar
Jamieson, J. C., Lawson, A. W. & Nachtrieb, N. D. (1959). New device for obtaining X-ray diffraction patterns from substances exposed to high pressure. Rev. Sci. Instrum. 30, 1016–1019.Google Scholar
Jenei, Zs., O'Bannon, E. F., Weir, S. T., Cynn, H., Lipp, M. J. & Evans, W. J. (2018). Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun. 9, 3563.Google Scholar
Jephcoat, A. P., Finger, L. W. & Cox, D. E. (1992). High pressure, high resolution synchrotron X-ray powder diffraction with a position-sensitive detector. High Press. Res. 8, 667–676.Google Scholar
Katrusiak, A. (1999). A hinge goniometer head. J. Appl. Cryst. 32, 576–578.Google Scholar
Katrusiak, A. (2001). Absorption correction for crystal-environment attachments from direction cosines. Z. Kristallogr. 216, 646–647.Google Scholar
Katrusiak, A. (2004a). Shadowing and absorption corrections of single-crystal high-pressure data. Z. Kristallogr. 219, 461–467.Google Scholar
Katrusiak, A. (2004b). Shadowing and absorption corrections of high-pressure powder diffraction data: toward accurate electron-density determinations. Acta Cryst. A60, 409–417.Google Scholar
Katrusiak, A. (2008). High-pressure crystallography. Acta Cryst. A64, 135–148.Google Scholar
Katrusiak, A. & Dauter, Z. (1996). Compressibility of lysozyme protein crystals by X-ray diffraction. Acta Cryst. D52, 607–608.Google Scholar
Katrusiak, A. & McMillan, P. F. (2004). Editors. High Pressure Crystallography. Dordrecht: Kluwer Academic Press.Google Scholar
Keller, K., Schlothauer, T., Schwarz, M., Heide, G. & Kroke, E. (2012). Shock wave synthesis of aluminium nitride with rocksalt structure. High Press. Res. 32, 23–29.Google Scholar
Kenichi, T., Sahu, P. Ch., Yoshiyasu, K. & Yasuo, T. (2001). Versatile gas-loading system for diamond-anvil cells. Rev. Sci. Instrum. 72, 3873–3876.Google Scholar
Khvostantsev, L. G. (1984). A verkh-niz (up-down) device of toroid type for generation of high pressure. High Temp. High Press. 16, 165–169.Google Scholar
Khvostantsev, L. G., Slesarev, V. N. & Brazhkin, V. V. (2004). Toroid type high-pressure device: history and prospects. High Press. Res. 24, 371–383.Google Scholar
Khvostantsev, L. G., Vereshchagin, L. F. & Novikov, A. P. (1977). Device of toroid type for high pressure generation. High Temp. High Press. 9, 637–639.Google Scholar
King, H. E. & Finger, L. W. (1979). Diffracted beam crystal centering and its application to high-pressure crystallography. J. Appl. Cryst. 12, 374–378.Google Scholar
Klotz, S. (2012). Techniques in High Pressure Neutron Scattering. Boca Raton: CRC Press.Google Scholar
Klotz, S., Chervin, J.-C., Munsch, P. & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 42, 075413.Google Scholar
Konno, M., Okamoto, T. & Shirotani, I. (1989). Structure changes and proton transfer between O...O in bis(dimethylglyoximato)platinum(II) at low temperature (150 K) and at high pressures (2.39 and 3.14 GPa). Acta Cryst. B45, 142–147.Google Scholar
Koster van Groos, A. F., Guggenheim, S. & Cornell, C. (2003). Environmental chamber for powder X-ray diffractometers for use at elevated pressures and low temperatures. Rev. Sci. Instrum. 74, 273–275.Google Scholar
Kuhs, W. F., Bauer, F. C., Hausmann, R., Ahsbahs, H., Dorwarth, R. & Hölzer, K. (1996). Single crystal diffraction with X-rays and neutrons: high quality at high pressure? High Press. Res. 14, 341–352.Google Scholar
Kundrot, C. E. & Richards, F. M. (1986). Collection and processing of X-ray diffraction data from protein crystals at high pressure. J. Appl. Cryst. 19, 208–213.Google Scholar
Kunz, M. (2001). High pressure phase transformations. In Phase Transformations in Materials, edited by G. Kostorz, pp. 655–695. Weinheim: Wiley-VCH Verlag.Google Scholar
Lacam, A. (1990). The SrB4O7:Sm2+ optical sensor and the pressure homogenization through thermal cycles in diamond anvil cells. High Press. Res. 5, 782–784.Google Scholar
Lacam, A. & Chateau, C. (1989). High-pressure measurements at moderate temperatures in a diamond anvil cell with a new optical sensor: SrB4O7:Sm2+. J. Appl. Phys. 66, 366–372.Google Scholar
Le Godec, Y., Dove, M. T., Francis, D. J., Kohn, S. C., Marshall, W. G., Pawley, A. R., Price, G. D., Redfern, S. A. T., Rhodes, N., Ross, N. L., Schofield, P. F., Schooneveld, E., Syfosse, G., Tucker, M. G. & Welch, M. D. (2001). Neutron diffraction at simultaneous high temperatures and pressures, with measurement of temperature by neutron radiography. Min. Mag. 65, 749–760. Google Scholar
Le Godec, Y., Dove, M. T., Redfern, S. A. T., Marshall, W. G., Tucker, M. G., Syfosse, G. & Besson, J. M. (2002). A new high P–T cell for neutron diffraction up to 7 GPa and 2000 K with measurement of temperature by neutron radiography. High Press. Res. 65, 737–748. Google Scholar
LeSar, R., Ekberg, S. A., Jones, L. H., Mills, R. L., Schwalbe, L. A. & Schiferl, D. (1979). Raman spectroscopy of solid nitrogen up to 374 kbar. Solid State Commun. 32, 131–134.Google Scholar
Letoullec, R., Pinceaux, J. P. & Loubeyre, P. (1988). The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations. High Press. Res. 1, 77–90.Google Scholar
Liebermann, R. C. (2011). Multi-anvil, high pressure apparatus: a half-century of development and progress. High Press. Res. 31, 493–532.Google Scholar
Liu, Z. X., Cui, Q. L. & Zou, G. T. (1990). Disappearance of the ruby R-line fluorescence under quasihydrostatic pressure and valid pressure range of ruby gauge. Phys. Lett. A, 143, 79–82.Google Scholar
McMahon, M. I. (2004). High pressure diffraction from good powders, poor powders and poor single crystals. In High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 1–20. Dordrecht: Kluwer. Google Scholar
McMahon, M. I. (2005). Structures from powders and poor-quality single crystals at high pressure. J. Synchrotron Rad. 12, 549–553.Google Scholar
McMahon, M. I. (2012). High-pressure crystallography. Top. Curr. Chem. 315, 69–109.Google Scholar
McWhan, D. B., Bloch, D. & Parisot, G. (1974). Apparatus for neutron diffraction at high pressure. Rev. Sci. Instrum. 45, 643–646.Google Scholar
Malinowski, M. (1987). A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal. J. Appl. Cryst. 20, 379–382.Google Scholar
Mao, H. K. & Bell, P. M. (1979). Observations of hydrogen at room temperature (25°C) and high pressure (to 500 kilobars). Science, 203, 1004–1006.Google Scholar
Mao, H. K., Bell, P. & Hadidiacos, C. (1987). Experimental phase relations in iron to 360 kbar, 1400°C, determined in an internally heated diamond-anvil apparatus. In High-Pressure Research in Mineral Physics, edited by M. H. Manghnani & Y. Syono, pp. 135–138. San Francisco: Terrapub/AGU. Google Scholar
Mao, H.-K., Bell, B. M., Shaner, J. W. & Steinberg, D. J. (1978). Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 mbar. J. Appl. Phys. 49, 3276–3283.Google Scholar
Mao, H.-K., Chen, X.-J., Ding, Y., Li, B. & Wang, L. (2018). Solids, liquids and gases under high pressure. Rev. Mod. Phys. 90, 015007. Google Scholar
Mao, H. K., Shu, J., Shen, G. Y., Hemley, R. J., Li, B. S. & Singh, A. K. (1998). Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature, 396, 741–743.Google Scholar
Mao, H.-K., Xu, J. & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676.Google Scholar
Merlini, M., Crichton, W. A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I. & Dubrovinsky, L. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc. Natl Acad. Sci. USA, 109, 13509–13514. Google Scholar
Merrill, L. & Bassett, W. A. (1974). Miniature diamond anvil pressure cell for single crystal X-ray diffraction studies. Rev. Sci. Instrum. 45, 290–294.Google Scholar
Mezouar, M., Crichton, W. A., Bauchau, S., Thurel, F., Witsch, H., Torrecillas, F., Blattmann, G., Marion, P., Dabin, Y., Chavanne, J., Hignette, O., Morawe, C. & Borel, C. (2005). Development of a new state-of-the-art beamline optimized for monochromatic single-crystal and powder X-ray diffraction under extreme conditions at the ESRF. J. Synchrotron Rad. 12, 659–664.Google Scholar
Miletich, R., Allan, D. R. & Kuhs, W. F. (2000). High-pressure single crystal techniques. Rev. Mineral. Geochem. 41, 445–519.Google Scholar
Miletich, R., Cinato, D. & Johänntgen, S. (2009). An internally heated composite gasket for diamond-anvil cells using the pressure chamber wall as the heating element. High Press. Res. 29, 290–305.Google Scholar
Mills, R. L., Liebenberg, D. H., Bronson, J. C. & Schmidt, L. C. (1980). Procedure for loading diamond cells with high-pressure gas. Rev. Sci. Instrum. 51, 891–895.Google Scholar
Ming, L. C. & Bassett, W. A. (1974). Laser heating in the diamond anvil press up to 2000°C sustained and 3000°C pulsed at pressures up to 260 kilobars. Rev. Sci. Instrum. 45, 1115–1118.Google Scholar
Moore, M. J., Sorensen, D. B. & DeVries, R. C. (1970). A simple heating device for diamond anvil high pressure cells. Rev. Sci. Instrum. 41, 1665–1666.Google Scholar
Murata, K., Yokogawa, K., Yoshino, H., Klotz, S., Munsch, P., Irizawa, A., Nishiyama, M., Iizuka, K., Nanba, T., Okada, T., Shiraga, Y. & Aoyama, S. (2008). Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature. Rev. Sci. Instrum. 79, 085101.Google Scholar
Nelmes, R. J. & McMahon, M. I. (1994). High-pressure powder diffraction on synchrotron sources. J. Synchrotron Rad. 1, 69–73.Google Scholar
Oehzelt, M., Weinmeier, K., Heimel, G., Pusching, P., Resel, R., Ambrosch-Draxl, C., Porsch, F. & Nakayama, A. (2002). Structural properties of anthracene under high pressure. High Press. Res. 22, 343–347. Google Scholar
Okuchi, T., Sasaki, S., Ohno, Y., Abe, J., Arima, H., Osakabe, T., Hattori, T., Sano-Furukawa, A., Komatsu, K., Kagi, H., Utsumi, W., Harjo, S., Ito, T. & Aizawa, K. (2012). Neutron powder diffraction of small-volume samples at high pressure using compact opposed-anvil cells and focused beam. J. Phys. Conf. Ser. 377, 012013.Google Scholar
Olejniczak, A. & Katrusiak, A. (2010). Pressure induced transformations of 1,4-diazabicyclo[2.2.2]octane (dabco) hydroiodide: diprotonation of dabco, its N-methylation and co-crystallization with methanol. CrystEngComm, 12, 2528–2532.Google Scholar
Olejniczak, A. & Katrusiak, A. (2011). Pressure-induced hydration of 1,4-diazabicyclo[2.2.2]octane hydroiodide (dabcoHI). Cryst. Growth Des. 11, 2250–2256.Google Scholar
Onodera, A. (1987). Octahedral-anvil high-pressure press. High Temp. High Press. 19, 579–609.Google Scholar
Onodera, A. & Amita, F. (1991). Apparatus and operation. In Organic Synthesis at High Pressures, edited by K. Matsumoto & R. M. Acheson. Chichester: John Wiley & Sons.Google Scholar
Palasyuk, T., Figiel, H. & Tkacz, M. (2004). High pressure studies of GdMn2 and its hydrides. J. Alloys Compd. 375, 62–66.Google Scholar
Palasyuk, T. & Tkacz, M. (2007). Pressure-induced structural phase transition in rare earth trihydrides. Part II. SmH3 and compressibility systematics. Solid State Commun. 141, 5, 302–305.Google Scholar
Paliwoda, D. K., Dziubek, K. F. & Katrusiak, A. (2012). Imidazole hidden polar phase. Cryst. Growth Des. 12, 4302–4305.Google Scholar
Patyk, E., Skumiel, J., Podsiadło, M. & Katrusiak, A. (2012). High-pressure (+)-sucrose polymorph. Angew. Chem. Int. Ed. 51, 2146–2150.Google Scholar
Piermarini, G. J. (2001). High pressure X-ray crystallography with the diamond cell at NIST/NBS. J. Res. Natl Inst. Stand. Technol. 106, 889–920.Google Scholar
Piermarini, G. J., Block, S. & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. J. Appl. Phys. 44, 5377–5382.Google Scholar
Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46, 2774–2780.Google Scholar
Piermarini, G. J., Mighell, A. D., Weir, C. E. & Block, S. (1969). Crystal structure of benzene II at 25 kilobars. Science, 165, 1250–1255.Google Scholar
Podsiadło, M. & Katrusiak, A. (2008). Isostructural relations in dihalomethanes and disproportionation of bromoiodomethane. Cryst­EngComm, 10, 1436–1442.Google Scholar
Półrolniczak, A., Sobczak, S. & Katrusiak, A. (2018). Solid-state associative reactions and the coordination compression mechanism. Inorg. Chem. 57, 8942–8950.Google Scholar
Ragan, D. D., Clarke, D. R. & Schiferl, D. (1996). Silicone fluid as a high-pressure medium in diamond anvil cells. Rev. Sci. Instrum. 67, 494–496.Google Scholar
Redfern, S. A. T. (2002). Neutron powder diffraction of minerals at high pressures and temperatures: some recent technical developments and scientific applications. Eur. J. Mineral. 14, 251–261.Google Scholar
Rivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, Ch. M. & Jacobsen, S. D. (2008). The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press. Res. 28, 273–292.Google Scholar
Royer, C. A. (2002). Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta, 1595, 201–209.Google Scholar
Runowski, M., Marciniak, J., Grzyb. T., Przybylska, D., Shyichuk, A., Barszcz, B., Katrusiak, A. & Lis, S. (2017). Lifetime nanomanometry – high-pressure luminescence of up-converting lathanide nanocrystals – SrF2:Yb3+,Er3+. Nanoscale, 9, 16030–16037.Google Scholar
Sakai, T., Yagi, T., Irifune, T., Kadobayashi, H., Hirao, N., Kunimoto, T., Ohfuji, H., Kawagushi-Imada, S., Ohishi, Y., Tateno, Sh. & Hirose, K. (2018). High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Press. Res. 38, 107–119.Google Scholar
Sakai, T., Yagi, T., Ohfuji, H., Irifune, T., Ohishi, Y., Hirao, N., Suzuki, Y., Kuroda, Y., Asakawa, T. & Kanemura, T. (2015). High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam. Rev. Sci. Instrum. 86, 033905.Google Scholar
Samara, G. A., Hansen, L. V., Assink, R. A., Morosin, B., Schirber, J. E. & Loy, D. (1993). Effects of pressure and ambient species on the orientational ordering in solid C60. Phys. Rev. B, 47, 4756–4764.Google Scholar
Senyshyn, A., Engel, J. M., Oswald, I. D. H., Vasylechko, L. & Berkowski, M. (2009). Powder diffraction studies of pressure-induced instabilities in orthorhombic LnGaO3. Z. Kristallogr. Suppl. 30, 341–346.Google Scholar
Shen, G., Mao, H. K. & Hemley, R. J. (1996). Laser-heated diamond anvil cell technique: double-sided heating with multimode Nd:YAG laser. Proceedings of the 3rd NIRIM International Symposium on Advanced Materials, ISAM'96, 4–8 March 1996, Tsukuba, Japan, pp. 149–152. Tsukuba: National Institute for Research in Inorganic Materials.Google Scholar
Shen, Y., Kumar, R. S., Pravica, M. & Nicol, M. F. (2004). Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells. Rev. Sci. Instrum. 75, 4450–4454.Google Scholar
Sikora, M. & Katrusiak, A. (2013). Pressure-controlled neutral–ionic transition and disordering of NH...N hydrogen bonds in pyrazole. J. Phys. Chem. C, 117, 10661–10668.Google Scholar
Singh, A. K. (1993). The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J. Appl. Phys. 73, 4278–4286.Google Scholar
Singh, A. K. & Balasingh, C. (1994). The lattice strains in a specimen (hexagonal system) compressed nonhydrostatically in an opposed anvil high pressure setup. J. Appl. Phys. 75, 4956–4962.Google Scholar
Singh, A. K., Balasingh, C., Mao, H. K., Hemley, R. J. & Shu, J. (1998). Analysis of lattice strains measured under nonhydrostatic pressure. J. Appl. Phys. 83, 7567–7575.Google Scholar
Smith, R. F., Eggert, J. H., Jeanloz, R., Duffy, T. S., Braun, D. G., Patterson, J. R., Rudd, R. E., Biener, J., Lazicki, A. E., Hamza, A. V., Wang, J., Braun, T., Benedict, L. X., Celliers, P. M. & Collins G. W. (2014). Ramp compression of diamond to five terapascals. Nature, 511, 330–333.Google Scholar
So, P. T. C., Gruner, S. M. & Shyamsunder, E. (1992). Automated pressure and temperature control apparatus for X-ray powder diffraction studies. Rev. Sci. Instrum. 63, 1763–1770.Google Scholar
Sobczak, S., Drożdż, W., Lampronti, G. I., Belenguer, A. M., Katrusiak, A. & Stefankiewicz, A. R. (2018). Dynamic covalent chemistry under high pressure: a new route to disulfide metathesis. Chem. Eur. J. 24, 8769–8773.Google Scholar
Srinivasa, S. R., Cartz, L., Jorgensen, J. D., Worlton, T. G., Beyerlein, R. A. & Billy, M. (1977). High-pressure neutron diffraction study of Si2N2O. J. Appl. Cryst. 10, 167–171. Google Scholar
Stishov, S. M. & Popova, S. V. (1961a). New dense polymorphic modification of silica. Geokhimiya, 10, 837–839.Google Scholar
Stishov, S. M. & Popova, S. V. (1961b). New dense polymorphic modification of silica. Geochemistry, 10, 923–926.Google Scholar
Syassen, K. (2008). Ruby under pressure. High Press. Res. 28, 75–126. Google Scholar
Takahashi, H., Mori, N., Matsumoto, T., Kamiyama, T. & Asano, H. (1996). Neutron powder diffraction studies at high pressure using a pulsed neutron source. High Press. Res. 14, 295–302.Google Scholar
Takahashi, E., Yamada, H. & Ito, E. (1982). An ultrahigh-pressure furnace assembly to 100 kbar and 1500°C with minimum temperature uncertainty. Geophys. Res. Lett. 9, 805–807.Google Scholar
Tateiwa, N. & Haga, Y. (2010). Appropriate pressure-transmitting media for cryogenic experiment in the diamond anvil cell up to 10 GPa. J. Phys. Conf. Ser. 215, 012178.Google Scholar
Tkacz, M. (1995). Novel high-pressure technique for loading diamond anvil cell with hydrogen. Pol. J. Chem. 69, 1205.Google Scholar
Tkacz, M. (1998). High pressure studies of the rhodium–hydrogen system in diamond anvil cell. J. Chem. Phys. 108, 2084–2087.Google Scholar
Tomkowiak, H., Olejniczak, A. & Katrusiak, A. (2013). Pressure-dependent formation and decomposition of thiourea hydrates. Cryst. Growth Des. 13, 121–125.Google Scholar
Van Valkenburg, A. (1962). Visual observations of high pressure transitions. Rev. Sci. Instrum. 33, 1462.Google Scholar
Van Valkenburg, A., Mao, H.-K. & Bell, P. M. (1971a). Solubility of minerals at high water pressures. Carnegie Inst. Washington Yearb. 70, 233–237.Google Scholar
Van Valkenburg, A., Mao, H.-K. & Bell, P. M. (1971b). Ikaite (CaCO3·6H2O), a phase more stable than calcite and aragonite (CaCO3) at high water pressure. Carnegie Inst. Washington Yearb. 70, 237–238.Google Scholar
Vereshchagin, L. F., Kabalkina, S. S. & Evdokimova, V. V. (1958). Kamera dlya rentgenostrukturnykh issledovanii monokristallov pod vysokim davleniem. (A camera for X-ray diffraction studies of single crystals at high pressure). Prib. Tekh. Eksp. 3, 90–92.Google Scholar
Vos, W. L. & Schouten, J. A. (1991). On the temperature correction to the ruby pressure scale. J. Appl. Phys. 69, 6744–6746.Google Scholar
Wang, J., Coppari, F., Smith, R. F., Eggert, J. H., Lazicki, A. E., Fratanduono, D. E., Rygg, J. R., Boehly, T. R., Collins, G. W. & Duffy, T. S. (2016). X-ray diffraction of molybdenum under ramp compression to 1 TPa. Phys. Rev. B, 94, 104102.Google Scholar
Wartmann, E. (1859). On the effect of pressure on the electric conductibility of metallic wires. Philos. Mag. 17, 441–442.Google Scholar
Wicks, J. K., Smith, R. F., Fratanduono, D. E., Coppari, F., Kraus, R. G., Newman, M. G., Rygg, J. R., Eggert, J. H. & Duffy, T. S. (2018). Crystal structure and equation of state of Fe–Si alloys at super-Earth core conditions. Sci. Adv. 4, eaao5864.Google Scholar
Weir, C. E., Lippincott, E. R., Van Valkenburg, A. & Bunting, N. E. (1959). Infrared studies in the 1–15-micron region to 30,000 atmos­pheres. J. Res. Natl Bur. Stand. USA, 63A, 5–62.Google Scholar
Whitfield, P. S., Nawaby, A. V., Blak, B. & Ross, J. (2008). Modified design and use of a high-pressure environmental stage for laboratory X-ray powder diffractometers. J. Appl. Cryst. 41, 350–355.Google Scholar
Worlton, T. G. & Decker, D. L. (1968). Neutron diffraction study of the magnetic structure of hematite to 41 kbar. Phys. Rev. 171, 596–599.Google Scholar
Xia, H., Duclos, S. J., Ruoff, A. L. & Vohra, Y. K. (1990). New high-pressure phase transition in zirconium metal. Phys. Rev. Lett. 64, 204–207.Google Scholar
Xu, J., Mao, H. K., Hemley, R. J. & Hines, E. (2004). Large volume high-pressure cell with supported moissanite anvils. Rev. Sci. Instrum. 75, 1034–1038.Google Scholar
Yagi, T., Yusa, H. & Yamakata, M. (1996). An apparatus to load gaseous materials to the diamond-anvil cell. Rev. Sci. Instrum. 67, 2981–2984.Google Scholar
Yamaoka, H., Zekko, Y., Jarrige, I., Lin, J.-F., Hiraoka N., Ishii, H., Tsuei, K. D. & Mizuki, J. (2012). Ruby pressure scale in a low-temperature diamond anvil cell. J. Appl. Phys. 112, 124503.Google Scholar
Yokogawa, K., Murata, K., Yoshino, H. & Aoyama, Sh. (2007). Solidification of high-pressure medium Daphne 7373. Jpn. J. Appl. Phys. 46, 3636–3639.Google Scholar
You, Sh.-J., Chen, L.-Ch. & Jin, Ch.-Q. (2009). Hydrostaticity of pressure media in diamond anvil cells. Chin. Phys. Lett. 26, 096202.Google Scholar
Zha, C. S. & Bassett, W. A. (2003). Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and Raman scattering. Rev. Sci. Instrum. 74, 1255–1262.Google Scholar
Zhao, Y. S., Lawson, A. C., Zhang, J. Z., Bennett, B. I. & Von Dreele, R. B. (2000). Thermoelastic equation of state of molybdenum. Phys. Rev. B, 62, 8766–8776.Google Scholar
Zhao, Y. S., Von Dreele, R. B. & Morgan, J. G. (1999). A high P–T cell assembly for neutron diffraction up to 10 GPa and 1500 K. High Press. Res. 16, 161–177.Google Scholar