International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.8, pp. 174-188
https://doi.org/10.1107/97809553602060000943

Chapter 2.8. Powder diffraction in external electric and magnetic fields

H. Ehrenberg,a* M. Hinterstein,a A. Senyshynb and H. Fuessc

aInstitut für Angewandte Materialien (IAM-ESS), Karlsruhe Institut für Technologie (KIT), Eggenstein-Leopoldshafen, Germany,bTechnische Universität München, Garching b. München, Germany, and cTechnische Universität Darmstadt, Darmstadt, Germany
Correspondence e-mail:  helmut.ehrenberg@kit.edu

References

Adam, R., Wadewitz, D., Gruner, W., Klemm, V., Ehrenberg, H. & Rafaja, D. (2013). Phase and microstructure development in the conversion type electrodes for Li-ion batteries based on the Cu-Fe-O system. J. Electrochem. Soc. 160, A1594–A1603.Google Scholar
Anastasopoulos, M., Bebb, R., Berry, K., Birch, J., Bryś, T., Buffet, J.-C., Clergeau, J.-F., Deen, P. P., Ehlers, G., van Esch, P., Everett, S. M., Guerard, B., Hall-Wilton, R., Herwig, K., Hultman, L., Höglund, C., Iruretagoiena, I., Issa, F., Jensen, J., Khaplanov, A., Kirstein, O., Higuera, I. L., Piscitelli, F., Robinson, L., Schmidt, S. & Stefanescu, I. (2017). Multi-grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS. J. Instrum. 12, P04030.Google Scholar
Anton, E.-M., Schmitt, L. A., Hinterstein, M., Trodahl, J., Kowalski, B., Jo, W., Kleebe, H.-J., Rödel, J. & Jones, J. L. (2012). Structure and temperature-dependent phase transitions of lead-free Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–K0.5Na0.5NbO3 piezoceramics. J. Mater. Res. 27, 2466–2478.Google Scholar
Ballabriga, R., Campbell, M., Heijne, E. H. M., Llopart, X. & Tlustos, L. (2007). The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans. Nucl. Sci. 54, 1824–1829.Google Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. & Shi, X. (2009). Photon counting microstrip detector for time resolved powder diffraction experiments. Nucl. Instrum. Methods Phys. Res. A, 604, 136–139.Google Scholar
Bergstöm, Ö., Andersson, A. M., Edström, K. & Gustafsson, T. (1998). A neutron diffraction cell for studying lithium-insertion processes in electrode materials. J. Appl. Cryst. 31, 823–825.Google Scholar
Bergström, O., Gustafsson, T. & Thomas, J. O. (1998). An X-ray powder diffraction attachment for in situ studies of ion insertion processes in electrode materials. J. Appl. Cryst. 31, 103–105.Google Scholar
Bird, M. D., Hongyu Bai, Bole, S., Jingping Chen, Dixon, I. R., Ehmler, H., Gavrilin, A. V., Painter, T. A., Smeibidl, P., Toth, J., Weijers, H., Ting Xu & Zhai, Y. (2009). The NHMFL hybrid magnet projects. IEEE Trans. Appl. Supercond. 19, 1612–1616.Google Scholar
Brown, F. J. (2010). Aspects of superconducting magnet design for neutron scattering sample environments. J. Phys. Conf. Ser. 251, 012093.Google Scholar
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. (2010). Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192.Google Scholar
Cartier, S., Bergamaschi, A., Dinapoli, R., Greiffenberg, D., Johnson, I., Jungmann, J. H., Mezza, D., Mozzanica, A., Schmitt, B., Shi, X., Stampanoni, M., Sun, J. & Tinti, G. (2014). Micron resolution of MÖNCH and GOTTHARD, small pitch charge integrating detectors with single photon sensitivity. J. Instrum. 9, C05027.Google Scholar
Choe, H., Gorfman, S., Hinterstein, M., Ziolkowski, M., Knapp, M., Heidbrink, S., Vogt, M., Bednarcik, J., Berghäuser, A., Ehrenberg, H. & Pietsch, U. (2015). Combining high time and angular resolutions: time-resolved X-ray powder diffraction using a multi-channel analyser detector. J. Appl. Cryst. 48, 970–974.Google Scholar
Daniels, J. E. & Drakopoulos, M. (2009). High-energy X-ray diffraction using the Pixium 4700 flat-panel detector. J. Synchrotron Rad. 16, 463–468.Google Scholar
Daniels, J. E., Finlayson, T. R., Studer, A. J., Hoffman, M. & Jones, J. L. (2007). Time-resolved diffraction measurements of electric-field-induced strain in tetragonal lead zirconate titanate. J. Appl. Phys. 101, 094104.Google Scholar
Daniels, J. E., Jo, W., Rödel, J., Honkimäki, V. & Jones, J. L. (2010). Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: a combinatorial investigation. Acta Mater. 58, 2103–2111.Google Scholar
Eckold, G., Schober, H. & Nagler, S. E. (2010). Editors. Studying Kinetics with Neutrons. Springer Series in Solid State Sciences. Berlin, Heidelberg: Springer.Google Scholar
Eriksson, T., Andersson, A. M., Bergström, Ö., Edström, K., Gustafsson, T. & Thomas, J. O. (2001). A furnace for in situ X-ray diffraction studies of insertion processes in electrode materials at elevated temperatures. J. Appl. Cryst. 34, 654–657.Google Scholar
Fuess, H., Bertaut, E. F., Pauthenet, R. & Durif, A. (1970). Structure aux rayons X, neutrons et propriétés magnétiques des orthovanadates de nickel et de cobalt. Acta Cryst. B26, 2036–2046.Google Scholar
Gukasov, A. & Brown, P. J. (2010). Determination of atomic site susceptibility tensors from neutron diffraction data on polycrystalline samples. J. Phys. Condens. Matter, 22, 502201.Google Scholar
Hansen, T. C., Henry, P. F., Fischer, H. E., Torregrossa, J. & Convert, P. (2008). The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas. Sci. Technol. 19, 034001.Google Scholar
Herklotz, M., Scheiba, F., Hinterstein, M., Nikolowski, K., Knapp, M., Dippel, A.-C., Giebeler, L., Eckert, J. & Ehrenberg, H. (2013). Advances in in situ powder diffraction of battery materials: a case study of the new beamline P02.1 at DESY, Hamburg. J. Appl. Cryst. 46, 1117–1127.Google Scholar
Hinterstein, M. (2011). Mikrostrukturanalyse von Piezokeramiken mit Hilfe von Synchrotron- und Neutronenstrahlung. Goettingen: Sierke Verlag.Google Scholar
Hinterstein, M., Hoelzel, M., Rouquette, J., Haines, J., Glaum, J., Kungl, H. & Hoffman, M. (2015). Interplay of strain mechanisms in morphotropic piezoceramics. Acta Mater. 94, 319–327.Google Scholar
Hinterstein, M., Knapp, M., Hölzel, M., Jo, W., Cervellino, A., Ehrenberg, H. & Fuess, H. (2010). Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. J. Appl. Cryst. 43, 1314–1321.Google Scholar
Hinterstein, M., Rouquette, J., Haines, J., Papet, P., Glaum, J., Knapp, M., Eckert, J. & Hoffman, M. (2014). Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics. Phys. Rev. B, 90, 094113.Google Scholar
Hinterstein, M., Rouquette, J., Haines, J., Papet, Ph., Knapp, M., Glaum, J. & Fuess, H. (2011). Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Phys. Rev. Lett. 107, 077602.Google Scholar
Hinterstein, M., Schmitt, L. A., Hoelzel, M., Jo, W., Rödel, J., Kleebe, H.-J. & Hoffman, M. (2015). Cyclic electric field response of morpho­tropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics. Appl. Phys. Lett. 106, 222904.Google Scholar
Hirota, K., Wakimoto, S. & Cox, D. E. (2006). Neutron and X-ray scattering studies of relaxors. J. Phys. Soc. Jpn, 75, 111006.Google Scholar
Hodeau, J. L., Bordet, P., Anne, M., Prat, A., Fitch, A. N., Dooryheé, E., Vaughan, G. & Freund, A. (1998). Nine-crystal multianalyzer stage for high-resolution powder diffraction between 6 keV and 40 keV. Proc. SPIE, 3448, 353–361.Google Scholar
Hoelzel, M., Senyshyn, A., Gilles, R., Boysen, H. & Fuess, H. (2007). Scientific review: the structure powder diffractometer SPODI. Neutron News, 18, 23–26.Google Scholar
Hoelzel, M., Senyshyn, A., Juenke, N., Boysen, H., Schmahl, W. & Fuess, H. (2012). High-resolution neutron powder diffractometer SPODI at research reactor FRM II. Nucl. Instrum. Methods Phys. Res. A, 667, 32–37.Google Scholar
Hoffmann, M. J., Hammer, M., Endriss, A. & Lupascu, D. C. (2001). Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater. 49, 1301–1310.Google Scholar
Jin, Y. M., Wang, Y. U., Khachaturyan, A. G., Li, J. E. & Viehland, D. (2003). Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601.Google Scholar
Johnsen, R. E. & Norby, P. (2013). Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphite. J. Appl. Cryst. 46, 1537–1543.Google Scholar
Johnson, I., Bergamaschi, A., Billich, H., Cartier, S., Dinapoli, R., Greiffenberg, D., Guizar-Sicairos, M., Henrich, B., Jungmann, J., Mezza, D., Mozzanica, A., Schmitt, B., Shi, X. & Tinti, G. (2014). Eiger: a single-photon counting X-ray detector. J. Instrum. 9, C05032.Google Scholar
Jones, J. L. (2007). The use of diffraction in the characterization of piezoelectric materials. J. Electroceram. 19, 69–81.Google Scholar
Jones, J., Hoffman, M., Daniels, J. E. & Studer, A. J. (2006). Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl. Phys. Lett. 89, 092901.Google Scholar
Jones, J. L., Pramanick, A., Nino, J. C., Maziar Motahari, S., Üstündag, E., Daymond, M. R. & Oliver, E. C. (2007). Time-resolved and orientation-dependent electric-field-induced strains in lead zirconate titanate ceramics. Appl. Phys. Lett. 90, 172909.Google Scholar
Kenzelmann, M., Harris, A. B., Aharony, A., Entin-Wohlman, O., Yildirim, T., Huang, Q., Park, S., Lawes, G., Broholm, C., Rogado, N., Cava, R. J., Kim, K. H., Jorge, G. & Ramirez, A. P. (2006). Field dependence of magnetic ordering in kagomé-staircase compound. Phys. Rev. B, 74, 014429.Google Scholar
Kimura, H., Kamada, Y., Noda, Y., Wakimoto, S., Kaneko, K., Metoki, N., Kakurai, K. & Kohn, K. (2007). Field-induced dielectric and magnetic phase transitions in multiferroic compounds of RMn2O5 (R = Er, Ho). J. Korean Phys. Soc. 51, 870–873.Google Scholar
Kimura, H., Noda, Y. & Kohn, K. (2009). Spin-driven ferroelectricity in the multiferroic compounds of RMn2O5. J. Magn. Magn. Mater. 321, 854–857.Google Scholar
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. & Tokura, Y. (2003). Magnetic control of ferroelectric polarization. Nature, 426, 55–58.Google Scholar
Köhli, M., Allmendinger, F., Häussler, W., Schröder, T., Klein, M., Meven, M. & Schmidt, U. (2016). Efficiency and spatial resolution of the CASCADE thermal neutron detector. Nucl. Instrum. Methods Phys. Res. A, 828, 242–249.Google Scholar
Koyama, K., Watanabe, K., Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. (2013). X-ray powder diffraction studies on MnFeP0.78Ge0.22 in high magnetic fields. J. Low Temp. Phys. 170, 279–284.Google Scholar
Kraft, P., Bergamaschi, A., Bronnimann, Ch., Dinapoli, R., Eikenberry, E. F., Graafsma, H., Henrich, B., Johnson, I., Kobas, M., Mozzanica, A., Schleputz, C. M. & Schmitt, B. (2009). Characterization and calibration of PILATUS detectors. IEEE Trans. Nucl. Sci. 56, 758–764.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). A twelve-analyzer detector system for high-resolution powder diffraction. J. Synchrotron Rad. 15, 427–432.Google Scholar
Levin, I., Reaney, I. M., Anton, E.-M., Jo, W., Rödel, J., Pokorny, J., Schmitt, L. A., Kleebe, H.-J., Hinterstein, M. & Jones, J. L. (2013). Local structure, pseudosymmetry, and phase transitions in Na1/2Bi1/2TiO3–K1/2Bi1/2TiO3 ceramics. Phys. Rev. B, 87, 024113.Google Scholar
Liss, K. D., Hunter, B., Hagen, M., Noakes, T. & Kennedy, S. (2006). Echidna – the new high-resolution powder diffractometer being built at OPAL. Physica B, 385–386, 1010–1012.Google Scholar
Liu, L., Knapp, M., Ehrenberg, H., Fang, L., Fan, H., Schmitt, L. A., Fuess, H., Hoelzel, M., Dammak, H., Thi, M. P. & Hinterstein, M. (2017). Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3–Bi1/2Na1/2TiO3 system. J. Eur. Ceram. Soc. 37, 1387–1399.Google Scholar
Mikhailova, D., Schwarz, B., Senyshyn, A., Bell, A. M. T., Skourski, Y., Ehrenberg, H., Tsirlin, A. A., Agrestini, S., Rotter, M., Reichel, P., Chen, J. M., Hu, Z., Li, Z. M., Li, Z. F. & Tjeng, L. H. (2012). Magnetic properties and crystal structure of SrCoIrO and SrNiIrO. Phys. Rev. B, 86, 134409.Google Scholar
Mitsui, Y., Koyama, K. & Watanabe, K. (2009). X-ray diffraction measurements in high magnetic fields and at high temperatures. Sci. Technol. Adv. Mater. 10, 014612.Google Scholar
Mittemeijer, E. J. & Welzel, U. (2012). Editors. Modern Diffraction Methods. Weinheim: Wiley-VCH.Google Scholar
Morcrette, M., Rozier, P., Dupont, L., Mugnier, E., Sannier, L., Galy, J. & Tarascon, J.-M. (2003). A reversible copper extrusion–insertion electrode for rechargeable Li batteries. Nat. Mater. 2, 755–761.Google Scholar
Mozzanica, A., Bergamaschi, A., Cartier, S., Dinapoli, R., Greiffenberg, D., Johnson, I., Jungmann, J., Maliakal, D., Mezza, D., Ruder, C., Schaedler, L., Schmitt, B., Shi, X. & Tinti, G. (2014). Prototype characterization of the JUNGFRAU pixel detector for SwissFEL. J. Instrum. 9, C05010.Google Scholar
Nikolowski, K., Baehtz, C., Bramnik, N. N. & Ehrenberg, H. (2005). A Swagelok-type in situ cell for battery investigations using synchrotron radiation. J. Appl. Cryst. 38, 851–853.Google Scholar
Noheda, B., Gonzalo, J. A., Cross, L. E., Guo, R., Park, S. E., Cox, D. E. & Shirane, G. (2000). Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B, 61, 8687–8695.Google Scholar
Ohzuku, T., Ueda, A. & Nagayama, M. (1993). Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 140, 1862–1870.Google Scholar
Oswald, S., Nikolowski, K. & Ehrenberg, H. (2009). Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials. Anal. Bioanal. Chem. 393, 1871–1877.Google Scholar
Patterson, B. D., Brönnimann, C., Maden, D., Gozzo, F., Groso, A., Schmitt, B., Stampanoni, M. & Willmott, P. R. (2005). The materials science beamline at the Swiss Light Source. Nucl. Instrum. Methods Phys. Res. B, 238, 224–228.Google Scholar
Pecharsky, V. K., Mudryk, Ya. & Gschneidner, K. A. Jr (2007). In-situ powder diffraction in high magnetic fields. Z. Kristallogr. Suppl. 26, 139–145.Google Scholar
Peral, I., McKinlay, J., Knapp, M. & Ferrer, S. (2011). Design and construction of multicrystal analyser detectors using Rowland circles: application to MAD26 at ALBA. J. Synchrotron Rad. 18, 842–850.Google Scholar
Poikela, T., Plosila, J., Westerlund, T., Campbell, M., Gaspari, M. D., Llopart, X., Gromov, V., Kluit, R., van Beuzekom, M., Zappon, F., Zivkovic, V., Brezina, C., Desch, K., Fu, Y. & Kruth, A. (2014). Timepix3: a 65k channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 9, C05013.Google Scholar
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407, 496–499.Google Scholar
Pramanick, A., Prewitt, A. D., Cottrell, M. A., Lee, W., Studer, A. J., An, K., Hubbard, C. R. & Jones, J. L. (2010). In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: response to electric fields and mechanical stress. Appl. Phys. A, 99, 557–564.Google Scholar
Prokhnenko, O., Stein, W.-D., Bleif, H.-J., Fromme, M., Bartkowiak, M. & Wilpert, T. (2015). Time-of-flight extreme environment diffractometer at the Helmholtz-Zentrum Berlin. Rev. Sci. Instrum. 86, 033102.Google Scholar
Radaelli, P. G. & Chapon, L. C. (2008). A neutron diffraction study of RMn2O5 multiferroics. J. Phys. Condens. Matter, 20, 434213.Google Scholar
Repper, J., Keller, T., Hofmann, M., Krempaszky, C., Werner, E. & Petry, W. (2009). Neutron Larmor diffraction for the determination of absolute lattice spacing Adv. X-ray Anal. 52, 201–208.Google Scholar
Schmitt, B., Broennimann, C., Eikenberry, E. F., Gozzo, F., Hoermann, C., Horisberger, R. & Patterson, B. (2003). Mythen detector system. Nucl. Instrum. Methods Phys. Res. A, 501, 267–272.Google Scholar
Schmitt, L. A., Hinterstein, M., Kleebe, H.-J. & Fuess, H. (2010). Comparative study of two lead-free piezoceramics using diffraction techniques. J. Appl. Cryst. 43, 805–810.Google Scholar
Schmitt, L. A., Schönau, K. A., Theissmann, R., Fuess, H., Kungl, H. & Hoffmann, M. J. (2007). Composition dependence of the domain configuration and size in Pb[Zr1−xTix]O3 ceramics. J. Appl. Phys. 101, 074107.Google Scholar
Schneider-Muntau, H.-J., Gavrilin, A. V. & Swenson, C. A. (2006). Magnet technology beyond 50 T. IEEE Trans. Appl. Supercond. 16, 926–933.Google Scholar
Schönau, K. A., Knapp, M., Kungl, H., Hoffmann, M. J. & Fuess, H. (2007). In situ synchrotron diffraction investigation of morphotropic Pb[Zr1−xTix]O3 under an applied electric field. Phys. Rev. B, 76, 144112.Google Scholar
Schönau, K. A., Schmitt, L. A., Knapp, M., Fuess, H., Eichel, R., Kungl, H. & Hoffmann, M. J. (2007). Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys. Rev. B, 75, 184117.Google Scholar
Sears, V. F. (1992). Neutron scattering lengths and cross sections. Neutron News, 3, 26–37.Google Scholar
Senyshyn, A., Dolotko, O., Mühlbauer, M. J., Nikolowski, K., Fuess, H. & Ehrenberg, H. (2013). Lithium intercalation into graphitic carbons revisited: experimental evidence for twisted bilayer behavior. J. Electrochem. Soc. 160, A3198–A3205.Google Scholar
Senyshyn, A., Mühlbauer, M. J., Dolotko, O., Hofmann, M. & Ehrenberg, H. (2015). Homogeneity of lithium distribution in cylinder-type Li-ion batteries. Sci. Rep. 5, 18380.Google Scholar
Senyshyn, A., Mühlbauer, M. J., Nikolowski, K., Pirling, T. & Ehrenberg, H. (2012). `In-operando' neutron scattering studies on Li-ion batteries. J. Power Sources, 203, 126–129.Google Scholar
Shirane, G. (1959). A note on the magnetic intensities of powder neutron diffraction. Acta Cryst. 12, 282–285.Google Scholar
Stefanescu, I., Christensen, M., Fenske, J., Hall-Wilton, R., Henry, P. F., Kirstein, O., Müller, M., Nowak, G., Pooley, D., Raspino, D., Rhodes, N., Šaroun, J., Schefer, J., Schooneveld, E., Sykora, J. & Schweika, W. (2017). Neutron detectors for the ESS diffractometers. J. Instrum. 12, P01019.Google Scholar
Studer, A. J., Hagen, M. E. & Noakes, T. J. (2006). Wombat: the high-intensity powder diffractometer at the OPAL reactor. Physica B, 385–386, 1013–1015.Google Scholar
Suard, E. & Hewat, A. (2001). The super-D2B project at the ILL. Neutron News, 12, 30–33.Google Scholar
Toraya, H., Hibino, H. & Ohsumi, K. (1996). A new powder diffractometer for synchrotron radiation with a multiple-detector system. J. Synchrotron Rad. 3, 75–83.Google Scholar
Weirich, T. E., Lábár, J. L. & Zuo, X. (2006). Editors. Electron Crystallography. Nato Science Series, Series II: Mathematics, Physics and Chemistry, Vol. 211. Heidelberg: Springer-Verlag.Google Scholar
Whittingham, M. S. (1976). Electrical energy storage and intercalation chemistry. Science, 192, 1126–1127.Google Scholar
Wilson, N. R., Petrenko, O. A. & Chapon, L. C. (2007). Magnetic phases in the kagomé staircase compound studied using powder neutron diffraction. Phys. Rev. B, 75, 094432.Google Scholar
Yoo, C.-S., Wei, H., Chen, J.-Y., Shen, G., Chow, P. & Xiao, Y. (2011). Time- and angle-resolved X-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions. Rev. Sci. Instrum. 82, 113901.Google Scholar
Yusuf, S. M., Jain, A. & Keller, L. (2013). Field induced incommensurate-to-commensurate magnetic phase transition in Ca3Co1.8Fe0.2O6: a neutron diffraction study. J. Phys. Condens. Matter, 25, 146001.Google Scholar
Zhang, S. T., Kounga, A. B., Aulbach, E., Ehrenberg, H. & Rödel, J. (2007). Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906.Google Scholar