Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.8, p. 186

Section 2.8.4. Summary

H. Ehrenberg,a* M. Hinterstein,a A. Senyshynb and H. Fuessc

aInstitut für Angewandte Materialien (IAM-ESS), Karlsruhe Institut für Technologie (KIT), Eggenstein-Leopoldshafen, Germany,bTechnische Universität München, Garching b. München, Germany, and cTechnische Universität Darmstadt, Darmstadt, Germany
Correspondence e-mail:

2.8.4. Summary

| top | pdf |

We have shown here that in situ studies under electric and magnetic fields are in a well advanced state. Laboratory equipment can be used for diverse experiments where changes occur on a timescale that can be followed with an exposure time of minutes. Real progress is, however, achieved by using high-energy synchrotron radiation and by using neutrons, which can penetrate larger volumes. Thus in operando studies of real devices are feasible. In addition to such diffraction experiments, which provide average information on a macroscopic length scale, complementary experiments like electron microscopy are vital for revealing local structural information. Only the combination of several methods can give sufficient insight into structure–property relationships and the functionality of materials.


Daniels, J. E., Jo, W., Rödel, J., Honkimäki, V. & Jones, J. L. (2010). Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: a combinatorial investigation. Acta Mater. 58, 2103–2111.Google Scholar
Gukasov, A. & Brown, P. J. (2010). Determination of atomic site susceptibility tensors from neutron diffraction data on polycrystalline samples. J. Phys. Condens. Matter, 22, 502201.Google Scholar
Jones, J., Hoffman, M., Daniels, J. E. & Studer, A. J. (2006). Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl. Phys. Lett. 89, 092901.Google Scholar
Radaelli, P. G. & Chapon, L. C. (2008). A neutron diffraction study of RMn2O5 multiferroics. J. Phys. Condens. Matter, 20, 434213.Google Scholar
Schönau, K. A., Knapp, M., Kungl, H., Hoffmann, M. J. & Fuess, H. (2007). In situ synchrotron diffraction investigation of morphotropic Pb[Zr1−xTix]O3 under an applied electric field. Phys. Rev. B, 76, 144112.Google Scholar
Schönau, K. A., Schmitt, L. A., Knapp, M., Fuess, H., Eichel, R., Kungl, H. & Hoffmann, M. J. (2007). Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys. Rev. B, 75, 184117.Google Scholar
Wilson, N. R., Petrenko, O. A. & Chapon, L. C. (2007). Magnetic phases in the kagomé staircase compound studied using powder neutron diffraction. Phys. Rev. B, 75, 094432.Google Scholar
Yusuf, S. M., Jain, A. & Keller, L. (2013). Field induced incommensurate-to-commensurate magnetic phase transition in Ca3Co1.8Fe0.2O6: a neutron diffraction study. J. Phys. Condens. Matter, 25, 146001.Google Scholar

to end of page
to top of page