Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 2.9, pp. 189-199

Chapter 2.9. Cells for in situ powder-diffraction investigation of chemical reactions

W. van Beeka* and P. Pattisona,b

aSwiss–Norwegian Beamlines at ESRF, CS 40220, 38043 Grenoble CEDEX 9, France, and bLaboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
Correspondence e-mail:


Andrieux, J., Chabert, C., Mauro, A., Vitoux, H., Gorges, B., Buslaps, T. & Honkimäki, V. (2014). A high-pressure and high-temperature gas-loading system for the study of conventional to real industrial sized samples in catalysed gas/solid and liquid/solid reactions. J. Appl. Cryst. 47, 245–255.Google Scholar
Bañares, M. A. (2005). Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today, 100, 71–77.Google Scholar
Becker, J., Bremholm, M., Tyrsted, C., Pauw, B., Jensen, K. M. Ø., Eltzholt, J., Christensen, M. & Iversen, B. B. (2010). Experimental setup for in situ X-ray SAXS/WAXS/PDF studies of the formation and growth of nanoparticles in near- and supercritical fluids. J. Appl. Cryst. 43, 729–736.Google Scholar
Beek, W. van, Safonova, O. V., Wiker, G. & Emerich, H. (2011). SNBL, a dedicated beamline for combined in situ X-ray diffraction, X-ray absorption and Raman scattering experiments. Phase Transit. 84, 726–732.Google Scholar
Bianchini, M., Leriche, J. B., Laborier, J.-L., Gendrin, L., Suard, E., Croguennec, L. & Masquelier, C. (2013). A new null matrix electrochemical cell for Rietveld refinements of in-situ or operando neutron powder diffraction data. J. Electrochem. Soc. 160, A2176–A2183.Google Scholar
Brant, W. R., Schmid, S., Du, G., Gu, Q. & Sharma, N. (2013). A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron X-ray powder diffraction. J. Power Sources, 244, 109–114.Google Scholar
Brunelli, M. & Fitch, A. N. (2003). A glass capillary cell for in situ powder X-ray diffraction of condensed volatile compounds. Solid HCFC-123a and HCFC-124. J. Synchrotron Rad. 10, 337–339.Google Scholar
Burley, J. C., O'Hare, D. & Williams, G. R. (2011). The application of statistical methodology to the analysis of time-resolved X-ray diffraction data. Anal. Methods, 3, 814–821.Google Scholar
Chernyshov, D., van Beek, W., Emerich, H., Milanesio, M., Urakawa, A., Viterbo, D., Palin, L. & Caliandro, R. (2011). Kinematic diffraction on a structure with periodically varying scattering function. Acta Cryst. A67, 327–335.Google Scholar
Chipera, S. J., Carey, J. W. & Bish, D. L. (1997). Controlled-humidity XRD analyses: application to the study of smectite expension/contraction. Adv. X-ray Anal. 39, 713–722.Google Scholar
Choe, H., Gorfman, S., Hinterstein, M., Ziolkowski, M., Knapp, M., Heidbrink, S., Vogt, M., Bednarcik, J., Berghäuser, A., Ehrenberg, H. & Pietsch, U. (2015). Combining high time and angular resolutions: time-resolved X-ray powder diffraction using a multi-channel analyser detector. J. Appl. Cryst. 48, 970–974.Google Scholar
Chupas, P. J., Chapman, K. W., Kurtz, C., Hanson, J. C., Lee, P. L. & Grey, C. P. (2008). A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Cryst. 41, 822–824.Google Scholar
Chupas, P. J., Qiu, X., Hanson, J. C., Lee, P. L., Grey, C. P. & Billinge, S. J. L. (2003). Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Cryst. 36, 1342–1347.Google Scholar
Clausen, B. S. (1991). In situ cell for combined XRD and on-line catalysis tests: studies of Cu-based water gas shift and methanol catalysts. J. Catal. 132, 524–535.Google Scholar
Clausen, B. S., Gråbaek, L., Steffensen, G., Hansen, P. L. & Topsøe, H. (1993). A combined QEXAFS/XRD method for on-line, in situ studies of catalysts: examples of dynamic measurements of Cu-based methanol catalysts. Catal. Lett. 20, 23–36.Google Scholar
Conterosito, E., Van Beek, W., Palin, L., Croce, G., Perioli, L., Viterbo, D., Gatti, G. & Milanesio, M. (2013). Development of a fast and clean intercalation method for organic molecules into layered double hydroxides. Cryst. Growth Des. 13, 1162–1169.Google Scholar
Couves, J. W., Thomas, J. M., Waller, D., Jones, R. H., Dent, A. J., Derbyshire, G. E. & Greaves, A. N. (1991). Nature (London), 354, 465–468.Google Scholar
De Marco, R. & Veder, J.-P. (2010). In situ structural characterization of electrochemical systems using synchrotron-radiation techniques. TrAC Trends Anal. Chem. 29, 528–537.Google Scholar
Dokter, W. H., Beelen, T. P. M., van Garderen, H. F., van Santen, R. A., Bras, W., Derbyshire, G. E. & Mant, G. R. (1994). Simultaneous monitoring of amorphous and crystalline phases in silicalite precursor gels. An in situ hydrothermal and time-resolved small- and wide-angle X-ray scattering study. J. Appl. Cryst. 27, 901–906.Google Scholar
Eu, W. S., Cheung, W. H. & Valix, M. (2009). Design and application of a high-temperature microfurnace for an in situ X-ray diffraction study of phase transformation. J. Synchrotron Rad. 16, 842–848.Google Scholar
Evans, J. S. O. & Radosavljević Evans, I. (2004). Beyond classical applications of powder diffraction. Chem. Soc. Rev. 33, 539–547.Google Scholar
Figueroa, S. J. A., Gibson, D., Mairs, T., Pasternak, S., Newton, M. A., Di Michiel, M., Andrieux, J., Christoforidis, K. C., Iglesias-Juez, A., Fernandez-Garcia, M. & Prestipino, C. (2013). Innovative insights in a plug flow microreactor for operando X-ray studies. J. Appl. Cryst. 46, 1523–1527.Google Scholar
Friščić, T., Halasz, I., Beldon, P. J., Belenguer, A. M., Adams, F., Kimber, S. A. J., Honkimäki, V. & Dinnebier, R. E. (2013). Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73.Google Scholar
Hansen, B. R. S., Møller, K. T., Paskevicius, M., Dippel, A.-C., Walter, P., Webb, C. J., Pistidda, C., Bergemann, N., Dornheim, M., Klassen, T., Jørgensen, J.-E. & Jensen, T. R. (2015). In situ X-ray diffraction environments for high-pressure reactions. J. Appl. Cryst. 48, 1234–1241.Google Scholar
Hansen, T. C. & Kohlmann, H. (2014). Chemical reactions followed by in situ neutron powder diffraction. Z. Anorg. Allg. Chem. 640, 3044–3063.Google Scholar
He, H., Barnes, P., Munn, J., Turrillas, X. & Klinowski, J. (1992). Autoclave synthesis and thermal transformations of the alumino­phosphate molecular sieve VPI-5: an in situ X-ray diffraction study. Chem. Phys. Lett. 196, 267–273.Google Scholar
Herklotz, M., Scheiba, F., Hinterstein, M., Nikolowski, K., Knapp, M., Dippel, A.-C., Giebeler, L., Eckert, J. & Ehrenberg, H. (2013). Advances in in situ powder diffraction of battery materials: a case study of the new beamline P02.1 at DESY, Hamburg. J. Appl. Cryst. 46, 1117–1127.Google Scholar
Herklotz, M., Weiss, J., Ahrens, E., Yavuz, M., Mereacre, L., Kiziltas-Yavuz, N., Dräger, C., Ehrenberg, H., Eckert, J., Fauth, F., Giebeler, L. & Knapp, M. (2016). A novel high-throughput setup for in situ powder diffraction on coin cell batteries. J. Appl. Cryst. 49, 340–345.Google Scholar
Hill, A. H. (2013). A new gas system for automated in situ powder diffraction studies at the European Synchrotron Radiation Facility. J. Appl. Cryst. 46, 570–572.Google Scholar
Isnard, O. (2007). A review of in situ and/or time resolved neutron scattering. C. R. Phys. 8, 789–805.Google Scholar
Jacques, S. D. M., Di Michiel, M., Beale, A. M., Sochi, T., O'Brien, M. G., Espinosa-Alonso, L., Weckhuysen, B. M. & Barnes, P. (2011). Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution. Angew. Chem. Int. Ed. 50, 10148–10152.Google Scholar
Jacques, S. D. M., Leynaud, O., Strusevich, D., Stukas, P., Barnes, P., Sankar, G., Sheehy, M., O'Brien, M. G., Iglesias-Juez, A. & Beale, A. M. (2009). Recent progress in the use of in situ X-ray methods for the study of heterogeneous catalysts in packed-bed capillary reactors. Catal. Today, 145, 204–212.Google Scholar
Jensen, H., Bremholm, M., Nielsen, R. P., Joensen, K. D., Pedersen, J., Birkedal, H., Chen, Y.-S., Almer, J., Søgaard, E., Iversen, S. & Iversen, B. (2007). In situ high-energy synchrotron radiation study of sol–gel nanoparticle formation in supercritical fluids. Angew. Chem. Int. Ed. 46, 1113–1116.Google Scholar
Jensen, T. R., Nielsen, T. K., Filinchuk, Y., Jørgensen, J.-E., Cerenius, Y., Gray, E. M. & Webb, C. J. (2010). Versatile in situ powder X-ray diffraction cells for solid-gas investigations. J. Appl. Cryst. 43, 1456–1463.Google Scholar
Johnsen, R. E. & Norby, P. (2013). Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphite. J. Appl. Cryst. 46, 1537–1543.Google Scholar
Juhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. (2013). PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Cryst. 46, 560–566.Google Scholar
Kamazawa, K., Aoki, M., Noritake, T., Miwa, K., Sugiyama, J., Towata, S., Ishikiriyama, M., Callear, S. K., Jones, M. O. & David, W. I. F. (2013). In-operando neutron diffraction studies of transition metal hydrogen storage materials. Adv. Energ. Mater. 3, 39–42.Google Scholar
Kraft, P., Bergamaschi, A., Broennimann, C., Dinapoli, R., Eikenberry, E. F., Henrich, B., Johnson, I., Mozzanica, A., Schlepütz, C. M., Willmott, P. R. & Schmitt, B. (2009). Performance of single-photon-counting PILATUS detector modules. J. Synchrotron Rad. 16, 368–375.Google Scholar
Krogh Andersen, E., Krogh Andersen, I. G., Norby, P. & Hanson, J. C. (1998). Kinetics of oxidation of fuel cell cathode materials lanthanum strontium manganates(III)(IV) at actual working conditions: in situ powder diffraction studies. J. Solid State Chem. 141, 235–240.Google Scholar
Kühnel, R. & van der Gaast, S. J. (1993). Humidity controlled diffractometry and its application. Adv. X-ray Anal. 36, 439–449.Google Scholar
Linnow, K., Zeunert, A. & Steiger, M. (2006). Investigation of sodium sulfate phase transitions in a porous material using humidity- and temperature-controlled X-ray diffraction. Anal. Chem. 78, 4683–4689.Google Scholar
Llewellyn, P. L., Horcajada, P., Maurin, G., Devic, T., Rosenbach, N., Bourrelly, S., Serre, C., Vincent, D., Loera-Serna, S., Filinchuk, Y. & Férey, G. (2009). Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). J. Am. Chem. Soc. 131, 13002–13008.Google Scholar
Lorenz, G., Neder, R. B., Marxreiter, J., Frey, F. & Schneider, J. (1993). A mirror furnace for neutron diffraction up to 2300 K. J. Appl. Cryst. 26, 632–635.Google Scholar
Madsen, I. C., Scarlett, N. V. Y. & Whittington, B. I. (2005). Pressure acid leaching of nickel laterite ores: an in situ diffraction study of the mechanism and rate of reaction. J. Appl. Cryst. 38, 927–933.Google Scholar
Majuste, D., Ciminelli, V. S. T., Eng, P. J. & Osseo-Asare, K. (2013). Applications of in situ synchrotron XRD in hydrometallurgy: literature review and investigation of chalcopyrite dissolution. Hydrometallurgy, 131–132, 54–66.Google Scholar
Margulies, L., Kramer, M. J., McCallum, R. W., Kycia, S., Haeffner, D. R., Lang, J. C. & Goldman, A. I. (1999). New high temperature furnace for structure refinement by powder diffraction in controlled atmospheres using synchrotron radiation. Rev. Sci. Instrum. 70, 3554–3561.Google Scholar
Meneghini, C., Artioli, G., Balerna, A., Gualtieri, A. F., Norby, P. & Mobilio, S. (2001). Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline. J. Synchrotron Rad. 8, 1162–1166.Google Scholar
Mi, J. L., Shen, Y., Becker, J., Bremholm, M. & Iversen, B. B. (2014). Controlling allotropism in ruthenium nanoparticles: a pulsed-flow supercritical synthesis and in situ synchrotron X-ray diffraction study. J. Phys. Chem. C, 118, 11104–11110.Google Scholar
Milanesio, M., Artioli, G., Gualtieri, A. F., Palin, L. & Lamberti, C. (2003). Template burning inside TS-1 and Fe-MFI molecular sieves: an in situ XRPD study. J. Am. Chem. Soc. 125, 14549–14558.Google Scholar
Møller, K. T., Hansen, B. R. S., Dippel, A.-C., Jørgensen, J.-E. & Jensen, T. R. (2014). Characterization of gas-solid reactions using in situ powder X-ray diffraction. Z. Anorg. Allg. Chem. 640, 3029–3043.Google Scholar
Moorhouse, S. J., Vranješ, N., Jupe, A., Drakopoulos, M. & O'Hare, D. (2012). The Oxford–Diamond in situ cell for studying chemical reactions using time-resolved X-ray diffraction. Rev. Sci. Instrum. 83, 084101.Google Scholar
Morcrette, M., Chabre, Y., Vaughan, G., Amatucci, G., Leriche, J.-B., Patoux, S., Masquelier, C. & Tarascon, J.-M. (2002). In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochim. Acta, 47, 3137–3149.Google Scholar
Moury, R., Hauschild, K., Kersten, W., Ternieden, J., Felderhoff, M. & Weidenthaler, C. (2015). An in situ powder diffraction cell for high-pressure hydrogenation experiments using laboratory X-ray diffractometers. J. Appl. Cryst. 48, 79–84.Google Scholar
Munn, J., Barnes, P., Haüsermann, D., Axon, S. A. & Klinowski, J. (1992). In-situ studies of the hydrothermal synthesis of zeolites using synchrotron energy-dispersive X-ray diffraction. J. Phase Transit. 39, 129–134.Google Scholar
Nauman, E. B. (2008). Chemical Reactor Design, Optimization, and Scaleup. Hoboken: John Wiley & Sons.Google Scholar
Neder, R. B. & Proffen, T. (2008). Diffuse Scattering and Defect Structure Simulations. Oxford University Press.Google Scholar
Newton, M. A. & van Beek, W. (2010). Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem. Soc. Rev. 39, 4845–4863.Google Scholar
Norby, P. (2006). In-situ XRD as a tool to understanding zeolite crystallization. Curr. Opin. Colloid Interf. Sci. 11, 118–125.Google Scholar
Norby, P., Cahill, C., Koleda, C. & Parise, J. B. (1998). A reaction cell for in situ studies of hydrothermal titration. J. Appl. Cryst. 31, 481–483.Google Scholar
Norby, P., Hanson, J. C., Fitch, A. N., Vaughan, G., Flaks, L. & Gualtieri, A. (2000). Formation of α-eucryptite, LiAlSiO4: an in-situ synchrotron X-ray powder diffraction study of a high temperature hydrothermal synthesis. Chem. Mater. 12, 1473–1479.Google Scholar
Norby, P. & Schwarz, U. (2008). Powder Diffraction, Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge, pp. 439–463. Cambridge: The Royal Society of Chemistry.Google Scholar
O'Brien, M. G., Beale, A. M., Jacques, S. D. M., Di Michiel, M. & Weckhuysen, M. (2011). Closing the operando gap: the application of high energy photons for studying catalytic solids at work. Appl. Catal. A Gen. 391, 468–476.Google Scholar
Ok, K. M., O'Hare, D., Smith, R. I., Chowdhury, M. & Fikremariam, H. (2010). New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction. Rev. Sci. Instrum. 81, 125107.Google Scholar
Palancher, H., Pichon, C., Rebours, B., Hodeau, J. L., Lynch, J., Berar, J. F., Prevot, S., Conan, G. & Bouchard, C. (2005). A cell for in situ dynamic X-ray diffraction studies: application to the dehydration of zeolite SrX. J. Appl. Cryst. 38, 370–373.Google Scholar
Pang, W. K. & Peterson, V. K. (2015). A custom battery for operando neutron powder diffraction studies of electrode structure. J. Appl. Cryst. 48, 280–290.Google Scholar
Parise, J. B., Cahill, C. L. & Lee, Y. (2000). Dynamic powder crystallography with synchrotron X-ray sources. Can. Mineral. 38, 777–800.Google Scholar
Proffen, T., Frey, F., Plöckl, H. & Krane, H. G. (1995). A mirror furnace for synchrotron diffraction experiments up to 1600 K. J. Synchrotron Rad. 2, 229–232.Google Scholar
Riello, P., Lausi, A., Macleod, J., Plaisier, J. R., Zerauschek, G. & Fornasiero, P. (2013). In situ reaction furnace for real-time XRD studies. J. Synchrotron Rad. 20, 194–196.Google Scholar
Rijssenbeek, J., Gao, Y., Zhong, Z., Croft, M., Jisrawi, N., Ignatov, A. & Tsakalakos, T. (2011). In situ X-ray diffraction of prototype sodium metal halide cells: time and space electrochemical profiling. J. Power Sources, 196, 2332–2339.Google Scholar
Robertson, K. & Bish, D. (2010). Determination of the crystal structure of magnesium perchlorate hydrates by X-ray powder diffraction and the charge-flipping method. Acta Cryst. B66, 579–584.Google Scholar
Rosciano, F., Holzapfel, M., Scheifele, W. & Novák, P. (2008). A novel electrochemical cell for in situ neutron diffraction studies of electrode materials for lithium-ion batteries. J. Appl. Cryst. 41, 690–694.Google Scholar
Rowles, M. R. (2011). On the calculation of the gauge volume size for energy-dispersive X-ray diffraction. J. Synchrotron Rad. 18, 938–941.Google Scholar
Rowles, M. R., Styles, M. J., Madsen, I. C., Scarlett, N. V. Y., McGregor, K., Riley, D. P., Snook, G. A., Urban, A. J., Connolley, T. & Reinhard, C. (2012). Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction. J. Appl. Cryst. 45, 28–37.Google Scholar
Sharma, N., Du, G., Studer, A. J., Guo, Z. & Peterson, V. K. (2011). In-situ neutron diffraction study of the MoS2 anode using a custom-built Li-ion battery. Solid State Ionics, 199–200, 37–43.Google Scholar
Sharma, N., Pang, W. K., Guo, Z. & Peterson, V. K. (2015). In situ powder diffraction studies of electrode materials in rechargeable batteries. ChemSusChem, 8, 2826–2853.Google Scholar
Shen, Y., Pedersen, E. E., Christensen, M. & Iversen, B. B. (2014). An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional X-ray powder diffractometer. Rev. Sci. Instrum. 85, 084101.Google Scholar
Solovyov, L. A. (2012). Revision of the Mg(ClO4)2·4H2O crystal structure. Acta Cryst. B68, 89–90.Google Scholar
Steiger, M., Linnow, K., Juling, H., Gülker, G., Jarad, A. E., Brüggerhoff, S. & Kirchner, D. (2008). Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst. Growth Des. 8, 336–343.Google Scholar
Styles, M. J., Rowles, M. R., Madsen, I. C., McGregor, K., Urban, A. J., Snook, G. A., Scarlett, N. V. Y. & Riley, D. P. (2012). A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction. J. Synchrotron Rad. 19, 39–47.Google Scholar
Tarasov, L. P. & Warren, B. E. (1936). X-ray diffraction study of liquid sodium. J. Chem. Phys. 4, 236–238.Google Scholar
Techert, S., Schotte, F. & Wulff, M. (2001). Picosecond X-ray diffraction probed transient structural changes in organic solids. Phys. Rev. Lett. 86, 2030–2033.Google Scholar
Tonus, F., Bahout, M., Henry, P. F., Dutton, S. E., Roisnel, T. & Battle, P. D. (2009). Use of in situ neutron diffraction to monitor high-temperature, solid/H2-gas reactions. Chem. Commun. pp. 2556–2558.Google Scholar
Tsakoumis, N. E., Voronov, A., Rønning, M., van Beek, W., Borg, Ø., Rytter, E. & Holmen, A. (2012). Fischer–Tropsch synthesis: an XAS/XRPD combined in situ study from catalyst activation to deactivation. J. Catal. 291, 138–148.Google Scholar
Tschentscher, Th. & Suortti, P. (1998). Experiments with very high energy synchrotron radiation. J. Synchrotron Rad. 5, 286–292.Google Scholar
Wall, A. J., Heaney, P. J., Mathur, R., Post, J. E., Hanson, J. C. & Eng, P. J. (2011). J. Appl. Cryst. 44, 429–432.Google Scholar
Walspurger, S., Cobden, P. D., Haije, W. G., Westerwaal, R., Elzinga, G. D. & Safonova, O. V. (2010). In situ XRD detection of reversible dawsonite formation on alkali promoted alumina: a cheap sorbent for CO2 capture. Eur. J. Inorg. Chem. 2010, 2461–2464.Google Scholar
Walton, R. I. & O'Hare, D. (2000). Watching solids crystallise using in situ powder diffraction. Chem. Commun. pp. 2283–2291.Google Scholar
Warren, B. E. (1990). X-ray Diffraction. New York: Dover.Google Scholar
Watanabe, T. & Sato, T. (1988). Expansion characteristics of montmorillonite and saponite under various relative humidity conditions. Clay Sci. 7, 129–138.Google Scholar
Weckhuysen, B. M. (2002). Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. pp. 97–110.Google Scholar
Westgren, A. & Lindh, A. E. (1921). Zur Kristallbau des Eisens und Stahl. I. Z. Phys. Chem. 98, 181.Google Scholar
Widenmeyer, M., Niewa, R., Hansen, T. C. & Kohlmann, H. (2013). In situ neutron diffraction as a probe on formation and decomposition of nitrides and hydrides: a case study. Z. Anorg. Allg. Chem. 639, 285–295.Google Scholar
Williams, G. R., Khan, A. I. & O'Hare, D. (2009). Mechanistic and kinetic studies of guest ion intercalation into layered double hydroxides using time-resolved, in-situ X-ray powder diffraction. Struct. Bond. 119, 161–192.Google Scholar
Wragg, D. S., O'Brien, M. G., Bleken, F. L., Di Michiel, M., Olsbye, U. & Fjellvåg, H. (2012). Watching the methanol-to-olefin process with time- and space-resolved high-energy operando X-ray diffraction. Angew. Chem. Int. Ed. 51, 7956–7959.Google Scholar
Wragg, D. S., O'Brien, M. G., Di Michiel, M. & Lønstad-Bleken, F. (2015). Rietveld analysis of computed tomography and its application to methanol to olefin reactor beds. J. Appl. Cryst. 48, 1719–1728.Google Scholar
Xia, F., Qian, G., Brugger, J., Studer, A., Olsen, S. & Pring, A. (2010). A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations. Rev. Sci. Instrum. 81, 105107.Google Scholar
Yashima, M. & Tanaka, M. (2004). Performance of a new furnace for high-resolution synchrotron powder diffraction up to 1900 K: application to determine electron density distribution of the cubic CaTiO3 perovskite at 1674 K. J. Appl. Cryst. 37, 786–790.Google Scholar