Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.10, pp. 374-384

Chapter 3.10. Accuracy in Rietveld quantitative phase analysis with strictly monochromatic Mo and Cu radiations

L. León-Reina,a A. Cuesta,b M. García-Maté,c,d G. Álvarez-Pinazo,c,d I. Santacruz,c O. Vallcorba,b A. G. De la Torrec and M. A. G. Arandab,c*

aServicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga, Spain,bALBA Synchrotron, Carrer de la Llum 2–26, Cerdanyola, 08290 Barcelona, Spain,cDepartamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain, and dX-Ray Data Services S.L., Edificio de institutos universitarios, c/ Severo Ochoa 4, Parque tecnológico de Andalucía, 29590 Málaga, Spain
Correspondence e-mail:


Albertsson, J., Abrahams, S. C. & Kvick, Å. (1989). Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Cryst. B45, 34–40.Google Scholar
Aranda, M. A. G., De la Torre, Á. G. & León-Reina, L. (2012). Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Rev. Mineral. Geochem. 74, 169–209.Google Scholar
Bezou, C., Nonat, A., Mutin, J.-C., Christensen, A. N. & Lehmann, M. S. (1995). Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods. J. Solid State Chem. 117, 165–176.Google Scholar
Brown, G. M. & Levy, H. A. (1979). α-D-Glucose: further refinement based on neutron-diffraction data. Acta Cryst. B35, 656–659.Google Scholar
Buhrke, V. E., Jenkins, R. & Smith, D. K. (1998). A Practical Guide for the Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis. New York: Wiley.Google Scholar
Cuesta, A., Álvarez-Pinazo, G., García-Maté, M., Santacruz, I., Aranda, M. A. G., De la Torre, Á. G. & León-Reina, L. (2015). Rietveld quantitative phase analysis with molybdenum radiation. Powder Diffr. 30, 25–35.Google Scholar
De La Torre, A. G., Bruque, S. & Aranda, M. A. G. (2001). Rietveld quantitative amorphous content analysis. J. Appl. Cryst. 34, 196–202.Google Scholar
De la Torre, Á. G., López-Olmo, M., Álvarez-Rua, C., García-Granda, S. & Aranda, M. A. G. (2004). Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. Powder Diffr. 19, 240–246.Google Scholar
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.Google Scholar
Egami, T. & Billinge, S. J. L. (2003). Underneath the Bragg Peaks. Structural Analysis of Complex Materials. Amsterdam: Pergamon.Google Scholar
Elton, N. J. & Salt, P. D. (1996). Particle statistics in quantitative X-ray diffractometry. Powder Diffr. 11, 218–229.Google Scholar
Fauth, F., Peral, I., Popescu, C. & Knapp, M. (2013). The new material science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 28, S360–S370.Google Scholar
Fries, D. C., Rao, S. T. & Sundaralingam, M. (1971). Structural chemistry of carbohydrates. III. Crystal and molecular structure of 4-O-β-D-galactopyranosyl-α-D-glucopyranose monohydrate (α-lactose mono­hydrate). Acta Cryst. B27, 994–1005.Google Scholar
García-Maté, M., Santacruz, I., Cuesta, A., León-Reina, L., Aranda, M. A. G., Baco, I., Morin, V., Walenta, G., Gartner, E. & De la Torre, A. G. (2014). Amorphous content determination in calcium sulfoaluminate related materials by external and internal standard methodologies. Adv. Cem. Res. 27, 417–423.Google Scholar
Garske, D. & Peacor, D. R. (1965). Refinement of the structure of celestite SrSO4. Z. Kristallogr. 121, 204–210.Google Scholar
Hordvik, A. (1971). The crystal and molecular structure of α-xylose. Acta Chem. Scand. 25, 2175–2182.Google Scholar
Kanters, J. A., Roelofsen, G., Alblas, B. P. & Meinders, I. (1977). The crystal and molecular structure of β-D-fructose, with emphasis on anomeric effect and hydrogen-bond interactions. Acta Cryst. B33, 665–672.Google Scholar
Kirfel, A. & Will, G. (1980). Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Cryst. B36, 2881–2890.Google Scholar
Kullback, S. (1968). Information Theory and Statistics, pp. 1–11. New York: Dover.Google Scholar
Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748.Google Scholar
León-Reina, L., De la Torre, A. G., Porras-Vázquez, J. M., Cruz, M., Ordonez, L. M., Alcobé, X., Gispert-Guirado, F., Larrañaga-Varga, A., Paul, M., Fuellmann, T., Schmidt, R. & Aranda, M. A. G. (2009). Round robin on Rietveld quantitative phase analysis of Portland cements. J. Appl. Cryst. 42, 906–916.Google Scholar
León-Reina, L., García-Maté, M., Álvarez-Pinazo, G., Santacruz, I., Vallcorba, O., De la Torre, A. G. & Aranda, M. A. G. (2016). Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations. J. Appl. Cryst. 49, 722–735.Google Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D. & Lwin, T. (2001). Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 1a to 1h. J. Appl. Cryst. 34, 409–426.Google Scholar
Madsen, I. C., Scarlett, N. V. Y. & Kern, A. (2011). Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Z. Kristallogr. 226, 944–955.Google Scholar
Maslen, E. N., Streltsov, V. A., Streltsova, N. R. & Ishizawa, N. (1995). Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Cryst. B51, 929–939.Google Scholar
Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002). Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals. J. Appl. Cryst. 35, 383–400.Google Scholar
Stutzman, P. (2005). Powder diffraction analysis of hydraulic cements: ASTM Rietveld round-robin results on precision. Powder Diffr. 20, 97–100.Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.Google Scholar
Von Dreele, R. B. & Rodriguez-Carvajal, J. (2008). Powder Diffraction: Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge, pp. 58–88. Cambridge: Royal Society of Chemistry. .Google Scholar
Will, G., Bellotto, M., Parrish, W. & Hart, M. (1988). Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J. Appl. Cryst. 21, 182–191.Google Scholar
Zevin, L. S. & Kimmel, G. (1995). Quantitative X-ray Diffractometry. New York: Springer-Verlag.Google Scholar