International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk
International Tables for Crystallography (2018). Vol. H, ch. 3.1, pp. 224-251
https://doi.org/10.1107/97809553602060000946

Chapter 3.1. The optics and alignment of the divergent-beam laboratory X-ray powder diffractometer and its calibration using NIST standard reference materials

J. P. Cline,a* M. H. Mendenhall,a D. Black,a D. Windovera and A. Heninsa

aNational Institute of Standards and Technology, Gaithersburg, Maryland, USA
Correspondence e-mail:  james.cline@nist.gov

References

Azároff, L. V. (1955). Polarization correction for crystal-monochromatized X-radiation. Acta Cryst. 8, 701–704.Google Scholar
Bergmann, J., Friedel, P. & Kleeberg, R. (1998). BGMN – a new fundamental parameters based Rietveld program for laboratory X-ray sources, it's use in quantitative analysis and structure investigations. IUCr Commission on Powder Diffraction Newsletter, 20, 5–8. http://www.iucr.org/resources/commissions/powder-diffraction/newsletter/ .Google Scholar
Bergmann, J., Kleeberg, R., Haase, A. & Breidenstein, B. (2000). Advanced fundamental parameters model for improved profile analysis. In Proceedings of the Fifth European Conference on Residual Stresses, edited by A. J. Böttger, R. Delhez & E. J. Mittemeijer, Mater. Sci. Forum, 347–349, 303–308. Zürich Uetikon, Switzerland: Trans Tech. Publications.Google Scholar
Berkum, J. G. M. van, Sprong, G. J. M., de Keijser, T. H., Delhez, R. & Sonneveld, E. J. (1995). The optimum standard specimen for X-ray diffraction line-profile analysis. Powder Diffr. 10, 129–139.Google Scholar
BIPM (2006). The International System of Units (SI), 8th ed. Sèvres: Bureau International des Poids et Mesures. http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf .Google Scholar
Black, D. R., Windover, D., Henins, A., Filliben, J. & Cline, J. P. (2011). Certification of standard reference material 660b. Powder Diffr. 26 (Special Issue 02), 155–158.Google Scholar
Bruker AXS (2014). TOPAS Software. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/topas.html .Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223–228.Google Scholar
Cheary, R. W. & Cline, J. P. (1995). An analysis of the effect of different instrumental conditions on the shapes of X-ray line profiles. Adv. X-ray Anal. 38, 75–82.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Cheary, R. W. & Coelho, A. (1994). Synthesizing and fitting linear position-sensitive detector step-scanned line profiles. J. Appl. Cryst. 27, 673–681.Google Scholar
Cheary, R. W. & Coelho, A. A. (1996). Programs XFIT and FOURYA. CCP14 Powder Diffraction Library, Engineering and Physical Sciences Research Council, Daresbury Laboratory, UK. http://www.ccp14.ac.uk/. Google Scholar
Cheary, R. W. & Coelho, A. A. (1998a). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Cryst. 31, 851–861.Google Scholar
Cheary, R. W. & Coelho, A. A. (1998b). Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J. Appl. Cryst. 31, 862–868.Google Scholar
Cline, J. P. (2000). Use of NIST standard reference materials for characterization of instrument performance. In Industrial Applications of X-ray Diffraction, edited by F. H. Chung & D. K. Smith, pp. 903–917. New York: Marcel Dekker, Inc.Google Scholar
Cline, J. P., Mendenhall, M. H., Black, D., Windover, D. & Henins, A. (2015). The optics and alignment of the divergent beam laboratory X-ray powder diffractometer and its calibration using NIST standard reference materials. J. Res. NIST, 120, 173–222. http://nvlpubs.nist.gov/nistpubs/jres/120/jres.120.013.pdf .Google Scholar
Cline, J. P., Von Dreele, R. B., Winburn, R., Stephens, P. W. & Filliben, J. J. (2011). Addressing the amorphous content issue in quantitative phase analysis: the certification of NIST standard reference material 676a. Acta Cryst. A67, 357–367.Google Scholar
Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29, S13–S18.Google Scholar
Edmonds, J., Brown, A., Fischer, G., Foris, C., Goehner, R., Hubbard, C., Evans, E., Jenkins, R., Schreiner, W. N. & Visser, J. (1986). JCPDS – International Centre for Diffraction Data Task Group on Cell Parameter Refinement. Powder Diffr. 1, 66–76.Google Scholar
Fawcett, T. G., Kabbekodu, S. N., Faber, J., Needham, F. & McClune, F. (2004). Evaluating experimental methods and techniques in X-ray diffraction using 280,000 data sets in the Powder Diffraction File. Powder Diffr. 19, 20–25.Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Cryst. 27, 892–900.Google Scholar
Guinier, A. (1994). X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. N. Chelmsford, USA: Courier Dover Publications.Google Scholar
Hall, M. M., Veeraraghavan, V. G., Rubin, H. & Winchell, P. G. (1977). The approximation of symmetric X-ray peaks by Pearson type VII distributions. J. Appl. Cryst. 10, 66–68.Google Scholar
Hastings, J. B., Thomlinson, W. & Cox, D. E. (1984). Synchrotron X-ray powder diffraction. J. Appl. Cryst. 17, 85–95.Google Scholar
Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. (1997). Kα1,2 and Kβ1,3 X-ray emission lines of the 3d transition metals. Phys. Rev. A, 56, 4554–4568.Google Scholar
Huber (2014). Monochromator 611 manual. http://www.xhuber.de/fileadmin/user_upload/downloads/usermanuals/Guinier_Monochromator_611_online.pdf .Google Scholar
JCGM (2008a). Uncertainty of Measurement – Part 3: Guide to the expression of uncertainty in measurement (JCGM 100:2008, GUM: 1995). Tech. Rep. Joint Committee for Guides in Metrology. http://www.iso.org/sites/JCGM/GUM-introduction.htm .Google Scholar
JCGM (2008b). International vocabulary of metrology – basic and general concepts and associated terms (VIM). Tech. Rep. Joint Committee for Guides in Metrology. http://www.bipm.org/en/publications/guides/vim.html .Google Scholar
Jenkins, R. (1992). Round robin on powder diffractometer sensitivity. ICDD Workshop at Accuracy in Powder Diffraction II, May 26–29, NIST, Gaithersburg, USA.Google Scholar
Johansson, T. (1933). Über ein neuartiges, genau fokussierendes Röntgenspektrometer. Z. Phys. 82, 507–528.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures, 2nd ed. New York: John Wiley & Sons.Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Tech. Rep. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Louër, D. (1992). Personal communication.Google Scholar
Louër, D. & Langford, J. I. (1988). Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J. Appl. Cryst. 21, 430–437.Google Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P. (1999). Rietveld refinement guidelines. J. Appl. Cryst. 32, 36–50.Google Scholar
Maskil, N. & Deutsch, M. (1988). X-ray Kα satellites of copper. Phys. Rev. A, 38, 3467–3472.Google Scholar
Mendenhall, M. H., Mullen, K. & Cline, J. P. (2015). An implementation of the fundamental parameters approach for analysis of X-ray powder diffraction line profiles. J. Res. NIST, 120, 223–251.Google Scholar
NIST (2008). Standard Reference Material 676a: Alumina Internal Standard for Quantitative Analysis by X-ray Powder Diffraction. SRM certificate. NIST, U. S. Department of Commerce, Gaithersburg, MD, USA. https://www-s.nist.gov/srmors/view_detail.cfm?srm=676a .Google Scholar
NIST (2010). Standard Reference Material 660b: Lanthanum Hexaboride – Powder Line Position and Line Shape Standard for Powder Diffraction. SRM certificate. NIST, U. S. Department of Commerce, Gaithersburg, MD, USA. https://www-s.nist.gov/srmors/view_detail.cfm?srm=660b .Google Scholar
NIST (2015a). 209.1 – X-ray Diffraction (powder and solid forms). SRM catalog. NIST, U. S. Department of Commerce, Gaithersburg, MD, USA. https://www-s.nist.gov/srmors/viewTableV.cfm?tableid=149 .Google Scholar
NIST (2015b). Standard Reference Material 1976b: Instrument Response Standard for X-ray Powder Diffraction. SRM certificate. NIST, U. S. Department of Commerce, Gaithersburg, MD, USA. https://www-s.nist.gov/srmors/view_detail.cfm?srm=1976B .Google Scholar
NIST (2015c). Standard Reference Material 640e: Line Position and Line Shape Standard for Powder Diffraction (Silicon Powder). SRM certificate. NIST, U. S. Department of Commerce, Gaithersburg, MD, USA. https://www-s.nist.gov/srmors/view_detail.cfm?srm=640E .Google Scholar
NIST (2015d). Standard Reference Material 660c: Line Position and Line Shape Standard for Powder Diffraction (Lanthanum Hexaboride Powder). SRM certificate. NIST, U. S. Department of Commerce, Gaithersburg, MD, USA. https://www-s.nist.gov/srmors/view_detail.cfm?srm=660c .Google Scholar
Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Rigaku (2014). PDXL 2, Rigaku powder diffraction data analysis software version 2.2. Rigaku Corporation, Tokyo, Japan.Google Scholar
Taylor, B. & Kuyatt, C. (1994). TN1297: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. Tech. Rep. NIST. Washington, DC: U. S. Government Printing Office. http://physics.nist.gov/cuu/Uncertainty/index.html .Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549.Google Scholar
Wilson, A. J. C. (1963). Mathematical Theory of X-ray Powder Diffractometry. New York: Gordon & Breach.Google Scholar
Yao, T. & Jinno, H. (1982). Polarization factor for the X-ray powder diffraction method with a single-crystal monochromator. Acta Cryst. A38, 287–288.Google Scholar