Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.2, pp. 252-262

Chapter 3.2. The physics of diffraction from powders

P. W. Stephensa*

aDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794–3800, USA
Correspondence e-mail:


Bindzus, N., Straasø, T., Wahlberg, N., Becker, J., Bjerg, L., Lock, N., Dippel, A.-C. & Iversen, B. B. (2014). Experimental determination of core electron deformation in diamond. Acta Cryst. A70, 39–48.Google Scholar
Brindley, G. W. (1945). The effect of grain or particle size on x-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by x-ray methods. Philos. Mag. 36, 347–369.Google Scholar
Caglioti, G., Paoletti, A. T. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods, 3, 223–228.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1960). On resolution and luminosity of a neutron diffraction spectrometer for single crystal analysis. Nucl. Instrum. Methods, 9, 195–198.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Cheary, R. W. & Coelho, A. A. (1998). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Cryst. 31, 851–861.Google Scholar
Coppens, P. (1997). X-ray charge densities and chemical bonding. Oxford: International Union of Crystallography/Oxford University Press.Google Scholar
Debye, P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. 351, 809–823.Google Scholar
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.Google Scholar
Gozzo, F., De Caro, L., Giannini, C., Guagliardi, A., Schmitt, B. & Prodi, A. (2006). The instrumental resolution function of synchrotron radiation powder diffractometers in the presence of focusing optics. J. Appl. Cryst. 39, 347–357.Google Scholar
Hermann, H. & Ermrich, M. (1987). Microabsorption of X-ray intensity in randomly packed powder specimens. Acta Cryst. A43, 401–405.Google Scholar
Hewat, A. W. (1979). Absorption corrections for neutron diffraction. Acta Cryst. A35, 248.Google Scholar
Ida, T. (2010). Efficiency in the calculation of absorption corrections for cylinders. J. Appl. Cryst. 43, 1124–1125.Google Scholar
Järvinen, M. (1993). Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Cryst. 26, 525–531.Google Scholar
Kaduk, J. A. & Reid, J. (2011). Typical values of Rietveld instrument profile coefficients. Powder Diffr. 26, 88–93.Google Scholar
Krivoglaz, M. A. (1969). Theory of X-ray and thermal-neutron scattering by real crystals. New York: Plenum Press. (Translated from the Russian by S. Moss.)Google Scholar
Langford, J. I. & Wilson, A. J. C. (1978). Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113.Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748. Los Alamos, USA.Google Scholar
Loopstra, B. O. & Rietveld, H. M. (1969). The structure of some alkaline-earth uranates. Acta Cryst. B25, 787–791.Google Scholar
March, A. (1932). Mathematische Theorie der Regelung nach der Korngestah bei affiner Deformation. Z. Kristallogr. 81, 285–297.Google Scholar
Marshall, W. & Lovesey, S. W. (1971). Theory of Thermal Neutron Scattering. Oxford: Clarendon.Google Scholar
Masson, O., Dooryhée, E. & Fitch, A. N. (2003). Instrument line-profile synthesis in high-resolution synchrotron powder diffraction. J. Appl. Cryst. 36, 286–294.Google Scholar
Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982.Google Scholar
Popa, N. C. (1998). The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Cryst. 31, 176–180.Google Scholar
Riello, P., Fagherazzi, G., Clemente, D. & Canton, P. (1995). X-ray Rietveld analysis with a physically based background. J. Appl. Cryst. 28, 115–120.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter, 192, 55–69.Google Scholar
Rodríguez-Carvajal, J. (2001). Recent developments of the program FULLPROF. IUCr Commission on Powder Diffraction Newsletter, 26, 12–19.Google Scholar
Sabine, T. M. (1987). The N-crystal spectrometer. J. Appl. Cryst. 20, 23–27.Google Scholar
Scherrer, P. (1918). Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen, pp. 98–100.Google Scholar
Smith, D. K. (2001). Particle statistics and whole-pattern methods in quantitative X-ray powder diffraction analysis. Powder Diffr. 16, 186–191.Google Scholar
Soller, W. (1924). A new precision X-ray spectrometer. Phys. Rev. 24, 158–167.Google Scholar
Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. 32, 281–289.Google Scholar
Suortti, P. (1972). Effects of porosity and surface roughness on the X-ray intensity reflected from a powder specimen. J. Appl. Cryst. 5, 325–331.Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.Google Scholar
Thorkildsen, G. & Larsen, H. B. (1998). Primary extinction in cylinders and spheres. Acta Cryst. A54, 172–185.Google Scholar