International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.3, pp. 263-269
https://doi.org/10.1107/97809553602060000948

Chapter 3.3. Powder diffraction peak profiles

R. B. Von Dreelea*

aAdvanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439–4814, USA
Correspondence e-mail: vondreele@anl.gov

References

Avdeev, M., Jorgensen, J., Short, S. & Von Dreele, R. B. (2007). On the numerical corrections of time-of-flight neutron powder diffraction data. J. Appl. Cryst. 40, 710–715.Google Scholar
Buras, B. & Holas, A. (1968). Nukleonika, 13, 591–620.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223–228.Google Scholar
Carpenter, J. M., Lander, G. H. & Windsor, C. G. (1984). Instrumentation at pulsed neutron sources. Rev. Sci. Instrum. 55, 1019–1043.Google Scholar
Cheary, R. W. & Coelho, A. A. (1998a). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Cryst. 31, 851–861.Google Scholar
Cheary, R. W. & Coelho, A. A. (1998b). Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J. Appl. Cryst. 31, 862–868.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Cheary, R. W., Coelho, A. A. & Cline, J. P. (2004). Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Natl Inst. Stand. Technol. 109, 1–25.Google Scholar
Cole, I. & Windsor, C. G. (1980). The lineshapes in pulsed neutron powder diffraction. Nucl. Instrum. Methods, 171, 107–113.Google Scholar
Cooper, M. J. & Sayer, J. P. (1975). The asymmetry of neutron powder diffraction peaks. J. Appl. Cryst. 8, 615–618.Google Scholar
David, W. I. F. (1986). Powder diffraction peak shapes. Parameterization of the pseudo-Voigt as a Voigt function. J. Appl. Cryst. 19, 63–64.Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Cryst. 27, 892–900.Google Scholar
Glazer, A. M., Hidaka, M. & Bordas, J. (1978). Energy-dispersive powder profile refinement using synchrotron radiation. J. Appl. Cryst. 11, 165–172.Google Scholar
Hastings, J. B., Thomlinson, W. & Cox, D. E. (1984). Synchrotron X-ray powder diffraction. J. Appl. Cryst. 17, 85–95.Google Scholar
Howard, C. J. (1982). The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians. J. Appl. Cryst. 15, 615–620.Google Scholar
Ikeda, S. & Carpenter, J. M. (1985). Wide-energy-range, high-resolution measurements of neutron pulse shapes of polyethylene moderators. Nucl. Instrum. Methods Phys. Res. Sect. A, 239, 536–544.Google Scholar
Jorgensen, J. D., David, W. I. F. & Willis, B. T. M. (1992). White-beam and time-of-flight neutron diffraction. In International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson. Dordrecht: Kluwer.Google Scholar
Jorgensen, J. D., Johnson, D. H., Mueller, M. H., Peterson, S. W., Worlton, J. G. & Von Dreele, R. B. (1978). Profile analysis of pulsed-source neutron powder diffraction data. Proceedings of the Conference on Diffraction Profile Analysis, Cracow 14–15 August 1978, pp. 20–22.Google Scholar
Jorgensen, J. D. & Rotella, F. J. (1982). High-resolution time-of-flight powder diffractometer at the ZING-P′′ pulsed neutron source. J. Appl. Cryst. 15, 27–34.Google Scholar
Laar, B. van & Yelon, W. B. (1984). The peak in neutron powder diffraction. J. Appl. Cryst. 17, 47–54.Google Scholar
Malmros, G. & Thomas, J. O. (1977). Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer. J. Appl. Cryst. 10, 7–11.Google Scholar
Otto, J. W. (1997). On the peak profiles in energy-dispersive powder X-ray diffraction with synchrotron radiation. J. Appl. Cryst. 30, 1008–1015.Google Scholar
Parrish, W. (1992). Powder and related techniques: X-ray techniques. In International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, ch. 2.3. Dordrecht: Kluwer.Google Scholar
Popa, N. C. (1998). The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Cryst. 31, 176–180.Google Scholar
Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Robinson, R. A. & Carpenter, J. M. (1990). On the use of switch functions in describing pulsed moderators. Report LAUR 90-3125. Los Alamos National Laboratory, USA.Google Scholar
Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. 32, 281–289.Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). GSAS-II: the genesis of a modern open-source all-purpose crystallographic software package. J. Appl. Cryst. 46, 544–549.Google Scholar
Turberfield, K. C. (1970). Time-of-flight neutron diffractometry. In Thermal Neutron Diffraction, edited by B. T. M. Willis. Oxford University Press.Google Scholar
Von Dreele, R. B., Jorgensen, J. D. & Windsor, C. G. (1982). Rietveld refinement with spallation neutron powder diffraction data. J. Appl. Cryst. 15, 581–589.Google Scholar
Wang, Y., Uchida, T., Von Dreele, R., Rivers, M. L., Nishiyama, N., Funakoshi, K., Nozawa, A. & Kaneko, H. (2004). A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation. J. Appl. Cryst. 37, 947–956.Google Scholar
Worlton, J. G., Jorgensen, J. D., Beyerlein, R. A. & Decker, D. L. (1976). Multicomponent profile refinement of time-of-flight neutron diffraction data. Nucl. Instrum. Methods, 137, 331–337.Google Scholar
Young, R. A., Mackie, P. E. & von Dreele, R. B. (1977). Application of the pattern-fitting structure-refinement method of X-ray powder diffractometer patterns. J. Appl. Cryst. 10, 262–269.Google Scholar
Young, R. A. & Wiles, D. B. (1982). Profile shape functions in Rietveld refinements. J. Appl. Cryst. 15, 430–438.Google Scholar