International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.4, pp. 270-281
https://doi.org/10.1107/97809553602060000949

Chapter 3.4. Indexing a powder diffraction pattern

A. Altomare,a* C. Cuocci,a A. Moliternia and R. Rizzia

aInstitute of Crystallography – CNR, Via Amendola 122/o, Bari, I-70126, Italy
Correspondence e-mail:  angela.altomare@ic.cnr.it

References

Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., da Silva, I., Giacovazzo, C., Moliterni, A. G. G. & Spagna, R. (2004). Space-group determination from powder diffraction data: a probabilistic approach. J. Appl. Cryst. 37, 957–966.Google Scholar
Altomare, A., Camalli, M., Cuocci, C., da Silva, I., Giacovazzo, C., Moliterni, A. G. G. & Rizzi, R. (2005). Space group determination: improvements in EXPO2004. J. Appl. Cryst. 38, 760–767.Google Scholar
Altomare, A., Campi, G., Cuocci, C., Eriksson, L., Giacovazzo, C., Moliterni, A., Rizzi, R. & Werner, P.-E. (2009). Advances in powder diffraction pattern indexing: N-TREOR09. J. Appl. Cryst. 42, 768–775.Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C. & Polidori, G. (1995). On the number of statistically independent observations in a powder diffraction pattern. J. Appl. Cryst. 28, 738–744.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Cryst. 46, 1231–1235.Google Scholar
Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Rizzi, R. & Werner, P.-E. (2000). New techniques for indexing: N-TREOR in EXPO. J. Appl. Cryst. 33, 1180–1186.Google Scholar
Altomare, A., Giacovazzo, C. & Moliterni, A. (2008). Indexing and space group determination. In Powder Diffraction Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge, pp. 206–226. Cambridge: RSC Publishing.Google Scholar
Andrews, L. C. & Bernstein, H. J. (1988). Lattices and reduced cells as points in 6-space and selection of Bravais lattice type by projections. Acta Cryst. A44, 1009–1018.Google Scholar
Banerjee, S., Mukherjee, A., Neumann, M. A. & Louër, D. (2002). Ab-initio structure determination of a Cu(II)-Schiff base complex from X-ray powder diffraction data. Acta Cryst. A58, c264.Google Scholar
Bergmann, J. (2007). EFLECH/INDEX – another try of whole pattern indexing. Z. Kristallogr. Suppl. 26, 197–202.Google Scholar
Bergmann, J., Le Bail, A., Shirley, R. & Zlokazov, V. (2004). Renewed interest in powder diffraction data indexing. Z. Kristallogr. 219, 783–790.Google Scholar
Boultif, A. & Louër, D. (1991). Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Cryst. 24, 987–993.Google Scholar
Boultif, A. & Louër, D. (2004). Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 37, 724–731.Google Scholar
Brunelli, M., Fitch, A. N., Jouanneaux, A. & Mora, A. J. (2001). Crystal and molecular structures of norbornene. Z. Kristallogr. 216, 51–55.Google Scholar
Buerger, M. J. (1957). Reduced cells. Z. Kristallogr. 109, 42–60.Google Scholar
Buerger, M. J. (1960). Note on reduced cells. Z. Kristallogr. 113, 52–56.Google Scholar
Coelho, A. A. (2003a). Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Cryst. 36, 86–95.Google Scholar
Coelho, A. A. (2003b). TOPAS. Version 3.1 User's Manual. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
Coelho, A. A. & Kern, A. (2005). Discussion of the indexing algorithms within TOPAS. IUCr Commission on Powder Diffraction Newsletter, 32, 43–45.Google Scholar
Conway, J. H. & Fung, F. Y. C. (1997). The Sensual (Quadratic) Form. Washington, DC: The Mathematical Association of America.Google Scholar
Delaunay, B. (1933). Neue Darstellung der geometrischen Kristallographie. Z. Kristallogr. 84, 109–149.Google Scholar
Dong, C., Wu, F. & Chen, H. (1999). Correction of zero shift in powder diffraction patterns using the reflection-pair method. J. Appl. Cryst. 32, 850–853.Google Scholar
Giacovazzo, C. (2011). Crystallographic computing. In Fundamentals of Crystallography, 3rd ed., edited by C. Giacovazzo, pp. 66–156. Oxford: IUCr/Oxford University Press.Google Scholar
Harris, K. D. M., Johnston, R. L., Chao, M. H., Kariuki, B. M., Tedesco, E. & Turner, G. W. (2000). Genetic algorithm for indexing powder diffraction data. University of Birmingham, UK.Google Scholar
Ishida, T. & Watanabe, Y. (1967). Probability computer method of determining the lattice parameters from powder diffraction data. J. Phys. Soc. Jpn, 23, 556–565.Google Scholar
Ishida, T. & Watanabe, Y. (1971). Analysis of powder diffraction patterns of monoclinic and triclinic crystals. J. Appl. Cryst. 4, 311–316.Google Scholar
Ito, T. (1949). A general powder X-ray photography. Nature, 164, 755–756.Google Scholar
Ito, T. (1950). X-ray Studies on Polymorphism. Tokyo: Maruzen Company.Google Scholar
Karen, V. L. & Mighell, A. D. (1991). Converse-transformation analysis. J. Appl. Cryst. 24, 1076–1078.Google Scholar
Kariuki, B. M., Belmonte, S. A., McMahon, M. I., Johnston, R. L., Harris, K. D. M. & Nelmes, R. J. (1999). A new approach for indexing powder diffraction data based on whole-profile fitting and global optimization using a genetic algorithm. J. Synchrotron Rad. 6, 87–92.Google Scholar
Kroll, H., Stöckelmann, D. & Heinemann, R. (2011). Analysis of multiple solutions in powder pattern indexing: the common reciprocal metric tensor approach. J. Appl. Cryst. 44, 812–819.Google Scholar
Le Bail, A. (2004). Monte Carlo indexing with McMaille. Powder Diffr. 19, 249–254.Google Scholar
Le Bail, A. (2008). Structure solution. In Principles and Applications of Powder Diffraction, edited by A. Clearfield, J. H. Reibenspies & N. Bhuvanesh, pp. 261–309. Oxford: Wiley-Blackwell.Google Scholar
Louër, D. & Boultif, A. (2006). Indexing with the successive dichotomy method, DICVOL04. Z. Kristallogr. Suppl. 23, 225–230.Google Scholar
Louër, D. & Boultif, A. (2007). Powder pattern indexing and the dichotomy algorithm. Z. Kristallogr. Suppl. 26, 191–196.Google Scholar
Louër, D. & Boultif, A. (2014). Some further considerations in powder diffraction pattern indexing with the dichotomy method. Powder Diffr. 29, S2, S7–S12.Google Scholar
Louër, D. & Louër, M. (1972). Méthode d'essais et erreurs pour l'indexation automatique des diagrammes de poudre. J. Appl. Cryst. 5, 271–275.Google Scholar
Louër, D. & Vargas, R. (1982). Indexation automatique des diagrammes de poudre par dichotomies successives. J. Appl. Cryst. 15, 542–545.Google Scholar
Margiolaki, I., Wright, J. P., Fitch, A. N., Fox, G. C. & Von Dreele, R. B. (2005). Synchrotron X-ray powder diffraction study of hexagonal turkey egg-white lysozyme. Acta Cryst. D61, 423–432.Google Scholar
Mighell, A. D. (1976). The reduced cell: its use in the identification of crystalline materials. J. Appl. Cryst. 9, 491–498.Google Scholar
Mighell, A. D. (2001). Lattice symmetry and identification – the fundamental role of reduced cells in materials characterization. J. Res. Natl Inst. Stand. Technol. 106, 983–995.Google Scholar
Mighell, A. D. & Santoro, A. (1975). Geometrical ambiguities in the indexing of powder patterns. J. Appl. Cryst. 8, 372–374.Google Scholar
Nash, J. C. (1990). Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd ed. Bristol: Adam Hilger.Google Scholar
Neumann, M. A. (2003). X-cell: a novel indexing algorithm for routine tasks and difficult cases. J. Appl. Cryst. 36, 356–365.Google Scholar
Niggli, P. (1928). Handbuch der Experimentalphysik, Vol. 7, Part 1. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Oishi, R., Yonemura, M., Hoshikawa, A., Ishigaki, T., Mori, K., Torii, S., Morishima, T. & Kamiyama, T. (2009). New approach to the indexing of powder diffraction patterns using topographs. Z. Kristallogr. Suppl. 30, 15–20.Google Scholar
Oishi-Tomiyasu, R. (2012). Rapid Bravais-lattice determination algorithm for lattice parameters containing large observation errors. Acta Cryst. A68, 525–535.Google Scholar
Oishi-Tomiyasu, R. (2013). Reversed de Wolff figure of merit and its application to powder indexing solutions. J. Appl. Cryst. 46, 1277–1282.Google Scholar
Oishi-Tomiyasu, R. (2014a). Method to generate all the geometrical ambiguities of powder indexing solutions. J. Appl. Cryst. 47, 2055–2059.Google Scholar
Oishi-Tomiyasu, R. (2014b). Robust powder auto-indexing using many peaks. J. Appl. Cryst. 47, 593–598.Google Scholar
Oishi-Tomiyasu, R. (2016). A table of geometrical ambiguities in powder indexing obtained by exhaustive search. Acta Cryst. A72, 73–80.Google Scholar
Paszkowicz, W. (1996). Application of the smooth genetic algorithm for indexing powder patterns – tests for the orthorhombic system. Mater. Sci. Forum, 228–231, 19–24.Google Scholar
Pecharsky, V. K. & Zavalij, P. Y. (2009). Determination and refinement of the unit cell. In Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed., pp. 407–495. New York: Springer.Google Scholar
Roisnel, T. & Rodríquez-Carvajal, J. (2001). WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater. Sci. Forum, 378–381, 118–123.Google Scholar
Runge, C. (1917). Die Bestimmung eines Kristallsystems durch Rontgenstrahlen. Phys. Z. 18, 509–515.Google Scholar
Santoro, A. & Mighell, A. D. (1970). Determination of reduced cells. Acta Cryst. A26, 124–127.Google Scholar
Santoro, A. & Mighell, A. D. (1972). Properties of crystal lattices: the derivative lattices and their determination. Acta Cryst. A28, 284–287.Google Scholar
Santoro, A., Mighell, A. D. & Rodgers, J. R. (1980). The determination of the relationship between derivative lattices. Acta Cryst. A36, 796–800.Google Scholar
Shirley, R. (1980). Data accuracy for powder indexing. In Accuracy in Powder Diffraction, edited by S. Block & C. R. Hubbard, NBS Spec. Publ. 567, 361–382.Google Scholar
Shirley, R. (2002). User Manual, The Crysfire 2002 system for Automatic Powder Indexing. Guildford: Lattice Press.Google Scholar
Shirley, R. (2003). Overview of powder-indexing program algorithms (history and strengths and weaknesses). IUCr Comput. Comm. Newsl. 2, 48–54. http://www.iucr.org/resources/commissions/crystallographic-computing/newsletters/2 .Google Scholar
Smith, G. S. (1977). Estimating the unit-cell volume from one line in a powder diffraction pattern: the triclinic case. J. Appl. Cryst. 10, 252–255.Google Scholar
Smith, G. S. & Snyder, R. L. (1979). FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J. Appl. Cryst. 12, 60–65.Google Scholar
Smrčok, L., Koppelhuber-Bitschau, B., Shankland, K., David, W. I. F., Tunega, D. & Resel, R. (2001). Decafluoroquarterphenyl – crystal and molecular structure solved from X-ray powder data. Z. Kristallogr. 216, 63–66.Google Scholar
Tam, K. Y. & Compton, R. G. (1995). GAMATCH – a genetic algorithm-based program for indexing crystal faces. J. Appl. Cryst. 28, 640–645.Google Scholar
Taupin, D. (1973). A powder-diagram automatic-indexing routine. J. Appl. Cryst. 6, 380–385.Google Scholar
Visser, J. W. (1969). A fully automatic program for finding the unit cell from powder data. J. Appl. Cryst. 2, 89–95.Google Scholar
Werner, P.-E. (1964). Trial-and-error computer methods for the indexing of unknown powder patterns. Z. Kristallogr. 120, 375–387.Google Scholar
Werner, P.-E. (2002). Autoindexing. In Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 118–135. Oxford University Press.Google Scholar
Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J. Appl. Cryst. 18, 367–370.Google Scholar
Wolff, P. M. de (1957). On the determination of unit-cell dimensions from powder diffraction patterns. Acta Cryst. 10, 590–595.Google Scholar
Wolff, P. M. de (1958). Detection of simultaneous zone relations among powder diffraction lines. Acta Cryst. 11, 664–665.Google Scholar
Wolff, P. M. de (1968). A simplified criterion for the reliability of a powder pattern indexing. J. Appl. Cryst. 1, 108–113.Google Scholar
Young, R. A. (1993). Introduction to the Rietveld method. In The Rietveld Method, edited by R. A. Young, pp. 1–38. Oxford: IUCr/Oxford University Press.Google Scholar