International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.4, pp. 274-275

Section 3.4.3.1.5. Successive-dichotomy search method

A. Altomare,a* C. Cuocci,a A. Moliternia and R. Rizzia

aInstitute of Crystallography – CNR, Via Amendola 122/o, Bari, I-70126, Italy
Correspondence e-mail:  angela.altomare@ic.cnr.it

3.4.3.1.5. Successive-dichotomy search method

| top | pdf |

The successive-dichotomy method, first developed by Louër & Louër (1972[link]), is based on an exhaustive strategy working in direct space (except for triclinic systems, where it operates in reciprocal space) by varying the lengths of the cell axes and the interaxial angles within finite intervals. The search for the correct cell is performed in an n-dimensional domain D (where n is the number of cell parameters to be determined). If no solution belongs to D, the domain is discarded and the ranges for the allowed values of cell parameters are increased; on the contrary, if D contains a possible solution, it is explored further by dividing the domain into 2n subdomains via a successive-dichotomy procedure. Each subdomain is analyzed and discarded if it does not contain a solution. The method was originally applied to orthorhombic and higher-symmetry systems (Louër & Louër, 1972[link]), but it has been successively extended to monoclinic (Louër & Vargas, 1982[link]) and to triclinic systems (Boultif & Louër, 1991[link]). The search can be performed starting from cubic then moving down to lower symmetries (except for triclinic) by partitioning the space into shells of volume ΔV = 400 A3. For triclinic symmetry ΔV is related to the volume Vest suggested by the method proposed by Smith (1977[link]), which is able to estimate the unit-cell volume from only one line in the pattern:[V_{\rm est} \simeq {0.60 d^3_N \over {1\over N} - 0.0052},]where dN is the value for the Nth observed line; in the case N = 20 the triclinic cell volume is [V_{\rm est} \simeq 13.39 d_{20}^3].

Let us consider, as an example, the monoclinic case; in terms of direct cell parameters, Q(hkl) is given by (Boultif & Louër, 1991[link])[Q(hkl) = f(A,C,\beta) + g(B), ]where [f(A,C,\beta) = h^2/A^2 + l^2/C^2 - 2hl\cos \beta /(AC)], [A = a\sin \beta ], [C = c\sin \beta ], [g(B) = {k^2}/{B^2}] and B = b. The search using the successive-dichotomy method is performed in a four-dimensional space that is covered by increasing the integer values i, l, m and n in the intervals [A, A+] = [A = A0 + ip, A+ = A + p], [B, B+] = [B = B0 + lp, B+ = B + p], [C, C+] = [C = C0 + mp, C+ = C + p] and [β, β+] = [β = 90 + nθ, β+ = β + θ], where the step values of p and θ are 0.4 Å and 5°, respectively, and A0, B0 and C0 are the lowest values of A, B and C (based on the positions of the lowest-angle peaks), respectively. Each quartet of intervals defines a domain D and, by taking into account the current limits for the parameters A, B, C and β, a calculated pattern is generated, not in terms of discrete Q(hkl) values but of allowed intervals [\left [{Q{}_ - (hkl),{Q_ + }(hkl)} \right]]. D is retained only if the observed Qi values belong to the range [Q(hkl) − ΔQi, Q+(hkl) + ΔQi], where ΔQi is the absolute error of the observed lines (i.e., impurity lines are not tolerated). If D has been accepted, it is divided into 24 subdomains by halving the original intervals [A, A+], [B, B+], [C, C+] and [β, β+] and new limits [\left [{Q{}_ - (hkl),{Q_ + }(hkl)} \right]] are calculated; if a possible solution is found, the dichotomy method is applied iteratively. In case of triclinic symmetry the expression for Q(hkl) in terms of direct cell parameters is too complicated to be treated via the successive-dichotomy method; therefore the basic indexing equation (3.4.2)[link] is used. In this case, the [Q(hkl), Q+(hkl)] intervals are set in reciprocal space according to the Aij parameters of (3.4.2)[link]. To reduce computing time the following restrictions are put on the (hkl) Miller indices associated with the observed lines: (1) maximum h, k, l values equal to 2 in case of the first five lines; (2) h + k + l < 3 for the first two lines.

The outcome of the successive-dichotomy method is not strongly influenced by the presence of a dominant zone. New approaches have been devoted to overcome the limitations of the method with a strict dependence on data accuracy and on impurities (Boultif & Louër, 2004[link]; Louër & Boultif, 2006[link], 2007[link]), see Section 3.4.4.2[link]).

References

Boultif, A. & Louër, D. (1991). Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Cryst. 24, 987–993.Google Scholar
Boultif, A. & Louër, D. (2004). Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 37, 724–731.Google Scholar
Buerger, M. J. (1957). Reduced cells. Z. Kristallogr. 109, 42–60.Google Scholar
Louër, D. & Boultif, A. (2006). Indexing with the successive dichotomy method, DICVOL04. Z. Kristallogr. Suppl. 23, 225–230.Google Scholar
Louër, D. & Louër, M. (1972). Méthode d'essais et erreurs pour l'indexation automatique des diagrammes de poudre. J. Appl. Cryst. 5, 271–275.Google Scholar
Louër, D. & Vargas, R. (1982). Indexation automatique des diagrammes de poudre par dichotomies successives. J. Appl. Cryst. 15, 542–545.Google Scholar
Smith, G. S. (1977). Estimating the unit-cell volume from one line in a powder diffraction pattern: the triclinic case. J. Appl. Cryst. 10, 252–255.Google Scholar








































to end of page
to top of page