Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.5, pp. 282-287

Chapter 3.5. Data reduction to |Fhkl| values

A. Le Baila*

aUniversité du Maine, Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
Correspondence e-mail:


Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). EXPO: a program for full powder pattern decomposition and crystal structure solution. J. Appl. Cryst. 32, 339–340.Google Scholar
Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). EXTRA: a program for extracting structure-factor amplitudes from powder diffraction data. J. Appl. Cryst. 28, 842–846.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G. & Rizzi, R. (2011). Obtaining models suitable for Rietveld refinement: the EXPO2011 techniques. Z. Kristallogr. 226, 869–881.Google Scholar
Baerlocher, Ch. (1990). EXTRACT, a Fortran program for the extraction of integrated intensities from a powder pattern. Institut für Kristallographie, ETH, Zürich, Switzerland.Google Scholar
Bergmann, J., Le Bail, A., Shirley, R. & Zlokazov, V. (2004). Renewed interest in powder diffraction data indexing. Z. Kristallogr. 219, 783–790.Google Scholar
Byrom, P. G. & Lucas, B. W. (1993). POLISH: computer program for improving the accuracy of structure-factor magnitudes obtained from powder data. J. Appl. Cryst. 26, 137–139.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223–228.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Clearfield, C., Reibenspies, J. & Bhuvanesh, N. (2008). Principles and applications of powder diffraction, pp. 261–309. Oxford: Wiley.Google Scholar
Cooper, M. J., Rouse, K. D. & Sakata, M. (1981). An alternative to the Rietveld profile refinement method. Z. Kristallogr., 157, 101–117.Google Scholar
David, W. I. F. (1987). The probabilistic determination of intensities of completely overlapping reflections in powder diffraction patterns. J. Appl. Cryst. 20, 316–319.Google Scholar
David, W. I. F., Shankland, K., McCusker, L. B. & Baerlocher, Ch. (2002). Structure Determination from Powder Diffraction Data, IUCr Monographs on Crystallography, Vol 13. New York: Oxford University Press.Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. (1998). Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. pp. 931–932.Google Scholar
Dinnebier, R. E. & Billinge, S. J. L. (2008). Powder diffraction: theory and practice, pp. 134–165. Cambridge: RSC Publishing.Google Scholar
Dong, W. & Gilmore, C. J. (1998). The ab initio solution of structures from powder diffraction data: the use of maximum entropy and likelihood to determine the relative amplitudes of overlapped reflections using the pseudophase concept. Acta Cryst. A54, 438–446.Google Scholar
Estermann, M. A. & Gramlich, V. (1993). Improved treatment of severely or exactly overlapping Bragg reflections for the application of direct methods to powder data. J. Appl. Cryst. 26, 396–404.Google Scholar
Evans, J. S. O., Mary, T. A., Vogt, T., Subramanian, M. A. & Sleight, A. W. (1996). Negative thermal expansion in ZrW2O8 and HfW2O8. Chem. Mater. 8, 2809–2823.Google Scholar
Giacovazzo, C. (1998). Direct Phasing in Crystallography: Fundamentals and Applications, IUCr Monographs on Crystallography, Vol. 8, pp. 410–444. New York: Oxford University Press.Google Scholar
Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). Crystallography Open Database - an open-access collection of crystal structures. J. Appl. Cryst. 42, 726–729.Google Scholar
Izumi, F. & Ikeda, T. (2000). A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum, 321–324, 198–205.Google Scholar
Jansen, E., Schäfer, W. & Will, G. (1988). Profile fitting and the two-stage method in neutron powder diffractometry for structure and texture analysis. J. Appl. Cryst. 21, 228–239.Google Scholar
Jansen, J., Peschar, R. & Schenk, H. (1992). On the determination of accurate intensities from powder diffraction data. I. Whole-pattern fitting with a least-squares procedure. J. Appl. Cryst. 25, 231–236.Google Scholar
Jouanneaux, A., Murray, A. D. & Fitch, A. N. (1990). MPROF: a multipattern Rietveld refinement program for neutron, X-ray and synchrotron radiation. SERC Daresbury Laboratory, Warrington, England.Google Scholar
Kariuki, B. M., Belmonte, S. A., McMahon, M. I., Johnston, R. L., Harris, K. D. M. & Nelmes, R. J. (1999). A new approach for indexing powder diffraction data based on whole-profile fitting and global optimization using a genetic algorithm. J. Synchrotron Rad. 6, 87–92.Google Scholar
Langford, J. I., Boultif, A., Auffrédic, J. P. & Louër, D. (1993). The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide. J. Appl. Cryst. 26, 22–33.Google Scholar
Langford, J. I. & Louër, D. (1991). High-resolution powder diffraction studies of copper(II) oxide. J. Appl. Cryst. 24, 149–155.Google Scholar
Langford, J. I. & Louër, D. (1996). Powder diffraction. Rep. Prog. Phys. 59, 131–234.Google Scholar
Langford, J. I., Louër, D., Sonneveld, E. J. & Visser, J. W. (1986). Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffr. 1, 211–221.Google Scholar
Le Bail, A. (2001). ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data. Mater. Sci. Forum, 378, 65–70.Google Scholar
Le Bail, A. (2005). Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 20, 316–326.Google Scholar
Le Bail, A. (2007). Structure Determination from Powder Diffraction Database – SDPD. .Google Scholar
Le Bail, A., Cranswick, L. M. D., Adil, K., Altomare, A., Avdeev, M., Cerny, R., Cuocci, C., Giacovazzo, C., Halasz, I., Lapidus, S. H., Louwen, J. N., Moliterni, A., Palatinus, L., Rizzi, R., Schilder, E. C., Stephens, P. W., Stone, K. H. & van Mechelen, J. (2009). Third structure determination by powder diffractometry round robin (SDPDRR-3). Powder Diffr. 24, 254–262.Google Scholar
Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 23, 447–452.Google Scholar
Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). Structure determination by use of pattern decomposition and the Rietveld method on synchrotron X-ray and neutron powder data; the structures of Al2Y4O9 and I2O4. J. Appl. Cryst. 20, 123–129.Google Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P. (1999). Rietveld refinement guidelines. J. Appl. Cryst. 32, 36–50.Google Scholar
Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D. & Madsen, S. K. (2000). The structure of malaria pigment beta-haematin. Nature, 404, 307–310.Google Scholar
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361.Google Scholar
Pecharsky, V. K. & Zavalij, P. Y. (2003). Fundamentals of powder diffraction and structural characterization of materials. New York: Springer.Google Scholar
Peschar, R., Schenk, H. & Capkova, P. (1995). Preferred-orientation correction and normalization procedure for ab initio structure determination from powder data. J. Appl. Cryst. 28, 127–140.Google Scholar
Peterson, V. K. (2005). Lattice parameter measurement using Le Bail versus structural (Rietveld) refinement: a caution for complex, low symmetry systems. Powder Diffr. 20, 14–17.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Rius, J., Sane, J., Miravitlles, C., Amigo, J. M., Reventos, M. M. & Louër, D. (1996). Determination of crystal structures from powder diffraction data by direct methods: extraction of integrated intensities from partially overlapping Bragg reflections. Anal. Quim. 92, 223–227.Google Scholar
Rodriguez-Carvajal, J. (1990). FULLPROF: a program for Rietveld refinement and pattern-matching analysis. Abstracts of the meeting Powder Diffraction, Toulouse, France, pp. 127–128.Google Scholar
Rodriguez-Carvajal, J. (1993). Recent advances in magnetic structure detemination by neutron powder diffraction. Physica B, 192, 55–69.Google Scholar
Scott, H. G. (1987). PROFIT – a peak-fitting program for powder diffraction profile. IUCr Satellite Meeting on X-ray Powder Diffractometry, 20–23 August 1987, Fremantle, Western Australia. Abstract P28.Google Scholar
Sivia, D. S. & David, W. I. F. (1994). A Bayesian approach to extracting structure-factor amplitudes from powder diffraction data. Acta Cryst. A50, 703–714.Google Scholar
Smrčok, Ľ., Mach, P. & Le Bail, A. (2013). Decafluorocyclohex-1-ene at 4.2 K – crystal structure and theoretical analysis of weak interactions. Acta Cryst. B69, 395–404.Google Scholar
Solovyov, L. A., Fedorov, A. S. & Kuzubov, A. A. (2014). Complete crystal structure of decafluorocyclohex-1-ene at 4.2 K from original neutron diffraction data. Acta Cryst. B70, 395–397.Google Scholar
Sonneveld, E. J. & Visser, J. W. (1975). Automatic collection of powder data from photographs. J. Appl. Cryst. 8, 1–7.Google Scholar
Toraya, H. (1986). Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffraction data. J. Appl. Cryst. 19, 440–447.Google Scholar
Toraya, H. (1994). Applications of whole-powder-pattern fitting technique in materials characterization. Mater. Charact. Adv. X-ray Anal. 37, 37–47.Google Scholar
Waser, J. (1963). Least-squares refinement with subsidiary conditions. Acta Cryst. 16, 1091–1094.Google Scholar
Wiles, D. B. & Young, R. A. (1981). A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst. 14, 149–151.Google Scholar
Will, G. (1988). Crystal structure analysis and refinement using integrated intensities from accurate profile fits. Aust. J. Phys. 41, 283–296.Google Scholar
Will, G., Masciocchi, N., Parrish, W. & Hart, M. (1987). Refinement of simple crystal structures from synchrotron radiation powder diffraction data. J. Appl. Cryst. 20, 394–401.Google Scholar
Will, G., Parrish, W. & Huang, T. C. (1983). Crystal-structure refinement by profile fitting and least-squares analysis of powder diffractometer data. J. Appl. Cryst. 16, 611–622.Google Scholar
Young, R. A. (1993). The Rietveld Method. IUCr Monographs on Crystallography, Vol. 5. New York: Oxford University Press.Google Scholar