International
Tables for
Crystallography
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.6, pp. 288-303
https://doi.org/10.1107/97809553602060000951

Chapter 3.6. Whole powder pattern modelling: microstructure determination from powder diffraction data

M. Leonia*

aDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
Correspondence e-mail: Matteo.Leoni@unitn.it

References

Adler, T. & Houska, C. R. (1979). Simplifications in the X-ray line-shape analysis. J. Appl. Phys. 50, 3282–3287.Google Scholar
Alexander, L. (1954). The synthesis of X-ray spectrometer line profiles with application to crystallite size measurements. J. Appl. Phys. 25, 155–161.Google Scholar
Armstrong, N., Leoni, M. & Scardi, P. (2006). Considerations concerning Wilkens' theory of dislocation line-broadening. Z. Kristallogr. Suppl. 23, 81–86.Google Scholar
Balogh, L., Ribárik, G. & Ungár, T. (2006). Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis. J. Appl. Phys. 100, 023512.Google Scholar
Balzar, D. & Popović, S. (1996). Reliability of the simplified integral-breadth methods in diffraction line-broadening analysis. J. Appl. Cryst. 29, 16–23.Google Scholar
Bergmann, J. & Kleeberg, R. (2001). Fundamental parameters versus learnt profiles using the Rietveld program BGMN. Mater. Sci. Forum, 378–381, 30–37.Google Scholar
Berkum, J. G. M. van (1994). Strain Fields in Crystalline Materials. PhD thesis, Technische Universiteit Delft, Delft, The Netherlands.Google Scholar
Bertaut, E. F. (1949a). Etude aux rayons X de la répartition des dimensions des cristallites dans une poudre cristalline. C. R. Acad. Sci. 228, 492–494.Google Scholar
Bertaut, E. F. (1949b). Signification de la dimension cristalline mesurée d'apres la largeur de raie Debye-Scherrer. C. R. Acad. Sci. 228, 187–189.Google Scholar
Bertaut, E. F. (1950). Raies de Debye–Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines. Acta Cryst. 3, 14–18.Google Scholar
Beyerlein, K. R., Leoni, M. & Scardi, P. (2012). Temperature diffuse scattering of nanocrystals. Acta Cryst. A68, 382–392.Google Scholar
Billinge, S. J. L. (2008). Local structure from total scattering and atomic pair distribution function (PDF) analysis. In Powder Diffraction: Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge. London: Royal Society of Chemistry.Google Scholar
Brese, N. E., O'Keeffe, M., Ramakrishna, B. L. & Von Dreele, R. B. (1990). Low-temperature structures of CuO and AgO and their relationships to those of MgO and PdO. J. Solid State Chem. 89, 184–190.Google Scholar
Bruker (2009). DIFFRAC.SUITE TOPAS, Total Pattern Analysis Solution. Version 5. Bruker AXS, Karlsruhe, Germany.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimator for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223–228.Google Scholar
Cervellino, A., Giannini, C. & Guagliardi, A. (2003). Determination of nanoparticle structure type, size and strain distribution from X-ray data for monatomic f.c.c.-derived non-crystallographic nanoclusters. J. Appl. Cryst. 36, 1148–1158.Google Scholar
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.Google Scholar
Cheary, R. W. & Coelho, A. (1994). Synthesizing and fitting linear position-sensitive detector step-scanned line profiles. J. Appl. Cryst. 27, 673–681.Google Scholar
Cheary, R. W. & Coelho, A. A. (1998a). Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Cryst. 31, 851–861.Google Scholar
Cheary, R. W. & Coelho, A. A. (1998b). Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure. J. Appl. Cryst. 31, 862–868.Google Scholar
Cline, J. P., Black, D., Windover, D. & Henins, A. (2010). SRM 660b – Line Position and Line Shape Standard for Powder Diffraction. https://www-s.nist.gov/srmors/view_detail.cfm?srm=660b .Google Scholar
Coelho, A. A. (2005). A bound constrained conjugate gradient solution method as applied to crystallographic refinement problems. J. Appl. Cryst. 38, 455–461.Google Scholar
Coelho, A. A. (2009). TOPAS Academic. Version 5. http://www.topas-academic.net/.Google Scholar
Cozzoli, P. D., Snoeck, E., Garcia, M. A., Giannini, C., Guagliardi, A., Cervellino, A., Gozzo, F., Hernando, A., Achterhold, K., Ciobanu, N., Parak, F. G., Cingolani, R. & Manna, L. (2006). Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals. Nano Lett. 6, 1966–1972.Google Scholar
Debye, P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. 351, 809–823.Google Scholar
Deutsch, M., Forster, E., Holzer, G., Hartwig, J., Hämäläinen, K., Kao, C.-C., Huotari, S. & Diamant, R. (2004). X-ray spectrometry of copper: new results on an old subject. J. Res. Natl Inst. Stand. Technol. 109, 75–98.Google Scholar
Dragomir, I. C. & Ungár, T. (2002). Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Cryst. 35, 556–564.Google Scholar
Drits, V. A. & Tchoubar, C. (1990). X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons. Berlin: Springer-Verlag.Google Scholar
Edwards, O. S. & Lipson, H. (1942). Imperfections in the structure of cobalt. I. Experimental work and proposed structure. Proc. R. Soc. Lond. Ser. A, 180, 268–277.Google Scholar
Egami, T. & Billinge, S. J. L. (2003). Underneath the Bragg Peaks. Structural Analysis of Complex Materials. Oxford: Elsevier.Google Scholar
Estevez-Rams, E., Leoni, M., Scardi, P., Aragon-Fernandez, B. & Fuess, H. (2003). On the powder diffraction pattern of crystals with stacking faults. Philos. Mag. 83, 4045–4057.Google Scholar
Estevez-Rams, E., Welzel, U., Pentón Madrigal, A. & Mittemeijer, E. J. (2008). Stacking and twin faults in close-packed crystal structures: exact description of random faulting statistics for the full range of faulting probabilities. Acta Cryst. A64, 537–548.Google Scholar
Every, A. G. & McCurdy, A. K. (1992a). Landolt–Börnstein: Crystal and Solid State Physics New Series, Group III, Vol. 29, edited by D. F. Nelson, p. 12. Berlin: Springer.Google Scholar
Every, A. G. & McCurdy, A. K. (1992b). Landolt–Börnstein: Crystal and Solid State Physics New Series, Group III, Vol. 29, edited by D. F. Nelson, p. 68. Berlin: Springer.Google Scholar
Garrod, R. I., Brett, J. F. & MacDonald, J. A. (1954). X-ray line broadening and pure diffraction contours. Aust. J. Phys. 7, 77–95.Google Scholar
Gevers, R. (1954a). X-ray diffraction by close-packed crystals with `growth stacking faults' assuming an `N-layer influence'. Acta Cryst. 7, 492–494.Google Scholar
Gevers, R. (1954b). X-ray diffraction by close-packed crystals with `growth-' and `deformation or transformation stacking faults' assuming an `N-layer influence'. Acta Cryst. 7, 740–744.Google Scholar
Grebille, D. & Bérar, J.-F. (1985). Calculation of diffraction line profiles in the case of a major size effect: application to boehmite AlOOH. J. Appl. Cryst. 18, 301–307.Google Scholar
Groma, I., Ungár, T. & Wilkens, M. (1988). Asymmetric X-ray line broadening of plastically deformed crystals. I. Theory. J. Appl. Cryst. 21, 47–54.Google Scholar
Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. (1997). 1,2 and Kβ1,3 X-ray emission lines of the 3d transition metals. Phys. Rev. A, 56, 4554–4568.Google Scholar
Houska, C. R. & Smith, T. M. (1981). Least-squares analysis of X-ray diffraction line shapes with analytic functions. J. Appl. Phys. 52, 748.Google Scholar
Jones, F. W. (1938). The measurement of particle size by the X-ray method. Proc. R. Soc. Lond. Ser. A, 166, 16–43.Google Scholar
Kaganer, V. M. & Sabelfeld, K. K. (2010). X-ray diffraction peaks from correlated dislocations: Monte Carlo study of dislocation screening. Acta Cryst. A66, 703–716.Google Scholar
Kamminga, J.-D. & Delhez, R. (2000). Calculation of diffraction line profiles from specimens with dislocations. A comparison of analytical models with computer simulations. J. Appl. Cryst. 33, 1122–1127.Google Scholar
Kern, A. A. & Coelho, A. A. (1998). A new fundamental parameters approach in profile analysis of powder data. New Delhi: Allied Publishers.Google Scholar
Klimanek, P. & Kuzel, R. (1988). X-ray diffraction line broadening due to dislocations in non-cubic materials. I. General considerations and the case of elastic isotropy applied to hexagonal crystals. J. Appl. Cryst. 21, 59–66.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. New York: Wiley.Google Scholar
Krill, C. E. & Birringer, R. (1998). Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philos. Mag. A, 77, 621–640.Google Scholar
Krivoglaz, M. A. (1969). Theory of X-ray and Thermal Neutron Scattering by Real Crystals. New York: Plenum Press.Google Scholar
Krivoglaz, M. A., Martynenko, O. V. & Ryaboshapka, K. P. (1983). Influence of correlation in position of dislocations on X-ray diffraction by deformed crystals. Phys. Met. Metall. 55, 1–12.Google Scholar
Krivoglaz, M. A. & Ryaboshapka, K. P. (1963). Theory of X-ray scattering by crystals containing dislocations. Screw and edge dislocations randomly distributed throughout the crystal. Phys. Met. Metall. 15, 14–26.Google Scholar
Kuzel, R. & Klimanek, P. (1989). X-ray diffraction line broadening due to dislocations in non-cubic crystalline materials. III. Experimental results for plastically deformed zirconium. J. Appl. Cryst. 22, 299–307.Google Scholar
Langford, J. I. & Louër, D. (1982). Diffraction line profiles and Scherrer constants for materials with cylindrical crystallites. J. Appl. Cryst. 15, 20–26.Google Scholar
Langford, J. I. & Wilson, A. J. C. (1978). Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113.Google Scholar
Leineweber, A. (2011). Understanding anisotropic microstrain broadening in Rietveld refinement. Z. Kristallogr. 226, 905–923.Google Scholar
Leineweber, A. & Mittemeijer, E. J. (2004). Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: its orientation dependence caused by locally varying nitrogen content in [epsilon]-FeN0.433. J. Appl. Cryst. 37, 123–135.Google Scholar
Leineweber, A. & Mittemeijer, E. J. (2010). Notes on the order-of-reflection dependence of microstrain broadening. J. Appl. Cryst. 43, 981–989.Google Scholar
Lele, S. & Anantharaman, T. R. (1966). Influence of crystallite shape on particle size broadening of Debye–Scherrer reflections. Proc. Indian Acad. Sci. A, 64, 261–274.Google Scholar
Leonardi, A., Leoni, M., Siboni, S. & Scardi, P. (2012). Common volume functions and diffraction line profiles of polyhedral domains. J. Appl. Cryst. 45, 1162–1172.Google Scholar
Leoni, M. (2008). Diffraction analysis of layer disorder. Z. Kristallogr. 223, 561–568.Google Scholar
Leoni, M., Confente, T. & Scardi, P. (2006). PM2K: a flexible program implementing whole powder pattern modelling. Z. Kristallogr. Suppl. 23, 249–254.Google Scholar
Leoni, M., Di Maggio, R., Polizzi, S. & Scardi, P. (2004). X-ray diffraction methodology for the microstructural analysis of nanocrystalline powders: application to cerium oxide. J. Am. Ceram. Soc. 87, 1133–1140.Google Scholar
Leoni, M., Gualtieri, A. F. & Roveri, N. (2004). Simultaneous refinement of structure and microstructure of layered materials. J. Appl. Cryst. 37, 166–173.Google Scholar
Leoni, M., Martinez-Garcia, J. & Scardi, P. (2007). Dislocation effects in powder diffraction. J. Appl. Cryst. 40, 719–724.Google Scholar
Leoni, M. & Scardi, P. (2004). Nanocrystalline domain size distributions from powder diffraction data. J. Appl. Cryst. 37, 629–634.Google Scholar
Leoni, M., Scardi, P. & Langford, J. I. (1998). Characterization of standard reference materials for obtaining instrumental line profiles. Powder Diffr. 13, 210–215.Google Scholar
Martinez-Garcia, J., Leoni, M. & Scardi, P. (2007). Analytical expression for the dislocation contrast factor of the <001>{100} cubic slip-system: Application to Cu2O. Phys. Rev. B, 76, 174117.Google Scholar
Martinez-Garcia, J., Leoni, M. & Scardi, P. (2008). Analytical contrast factor of dislocations along orthogonal diad axes. Philos. Mag. Lett. 88, 443–451.Google Scholar
Martinez-Garcia, J., Leoni, M. & Scardi, P. (2009). A general approach for determining the diffraction contrast factor of straight-line dislocations. Acta Cryst. A65, 109–119.Google Scholar
Matěj, Z., Matějová, L., Novotný, F., Drahokoupil, J. & Kuzel, R. (2011). Determination of crystallite size distribution histogram in nanocrystalline anatase powders by XRD. Z. Kristallogr. Proc. 1, 87–92.Google Scholar
Nakajima, A., Yoshihara, A. & Ishigame, M. (1994). Defect-induced Raman spectra in doped CeO2. Phys. Rev. B, 50, 13297–13307.Google Scholar
Nye, J. F. (1987). Physical Properties of Crystals: Their Representation by Tensors and Matrices, reprint edition. Oxford University Press.Google Scholar
Paterson, M. S. (1952). X-ray diffraction by face-centered cubic crystals with deformation faults. J. Appl. Phys. 23, 805–811.Google Scholar
Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982.Google Scholar
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361.Google Scholar
Popa, N. C. (1998). The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Cryst. 31, 176–180.Google Scholar
Rao, S. & Houska, C. R. (1986). X-ray diffraction profiles described by refined analytical functions. Acta Cryst. A42, 14–19.Google Scholar
Ribárik, G. (2008). Modeling of Diffraction Patterns Properties. PhD thesis, Eötvös University, Budapest.Google Scholar
Ribárik, G., Gubicza, J. & Ungár, T. (2004). Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction. Mater. Sci. Eng. A Struct. Mater. 387–389, 343–347.Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Scardi, P. & Leoni, M. (1999). Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Cryst. 32, 671–682.Google Scholar
Scardi, P. & Leoni, M. (2001). Diffraction line profiles from polydisperse crystalline systems. Acta Cryst. A57, 604–613.Google Scholar
Scardi, P. & Leoni, M. (2002). Whole powder pattern modelling. Acta Cryst. A58, 190–200.Google Scholar
Scardi, P. & Leoni, M. (2004). Whole powder pattern modelling: theory and application. In Diffraction Analysis of the Microstructure of Materials, edited by E. J. Mittemeijer & P. Scardi, pp. 51–91. Berlin: Springer-Verlag.Google Scholar
Scardi, P. & Leoni, M. (2005). Diffraction whole-pattern modelling study of anti-phase domains in Cu3Au. Acta Mater. 53, 5229–5239.Google Scholar
Scardi, P., Leoni, M. & Beyerlein, K. R. (2011). On the modelling of the powder pattern from a nanocrystalline material. Z. Kristallogr. 226, 924–933.Google Scholar
Scardi, P., Leoni, M. & Delhez, R. (2004). Line broadening analysis using integral breadth methods: a critical review. J. Appl. Cryst. 37, 381–390.Google Scholar
Scardi, P., Leoni, M., Müller, M. & Di Maggio, R. (2010). In situ size-strain analysis of nanocrystalline ceria growth. Mater. Sci. Eng. A Struct. Mater. 528, 77–82.Google Scholar
Scardi, P., Leoni, M., Straffelini, G. & Giudici, G. D. (2007). Microstructure of Cu–Be alloy triboxidative wear debris. Acta Mater. 55, 2531–2538.Google Scholar
Scherrer, P. (1918). Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen, pp. 98–100.Google Scholar
Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. 32, 281–289.Google Scholar
Stokes, A. R. & Wilson, A. J. C. (1942). A method of calculating the integral breadths of Debye–Scherrer lines. Math. Proc. Cambridge Philos. Soc. 38, 313–322.Google Scholar
Stokes, A. R. & Wilson, A. J. C. (1944). The diffraction of X-rays by distorted crystal aggregates – I. Proc. Phys. Soc. 56, 174–181.Google Scholar
Treacy, M. M. J., Newsam, J. M. & Deem, M. W. (1991). A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. Ser. A, 433, 499–520.Google Scholar
Tromans, D. & Meech, J. A. (2001). Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation. Miner. Eng. 14, 1359–1377.Google Scholar
Ungár, T. (2001). Dislocation densities, arrangements and character from X-ray diffraction experiments. Mater. Sci. Eng. A Struct. Mater. 309–310, 14–22.Google Scholar
Ungár, T. & Borbély, A. (1996). The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis. Appl. Phys. Lett. 69, 3173.Google Scholar
Ungár, T., Dragomir, I., Révész, Á. & Borbély, A. (1999). The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Cryst. 32, 992–1002.Google Scholar
Ungár, T., Gubicza, J., Ribárik, G. & Borbély, A. (2001). Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Cryst. 34, 298–310.Google Scholar
Ungár, T. & Tichy, G. (1999). The effect of dislocation contrast on X-ray line profiles in untextured polycrystals. Phys. Stat. Solidi A Appl. Res. 171, 425–434.Google Scholar
Vargas, R., Louër, D. & Langford, J. I. (1983). Diffraction line profiles and Scherrer constants for materials with hexagonal crystallites. J. Appl. Cryst. 16, 512–518.Google Scholar
Velterop, L., Delhez, R., de Keijser, Th. H., Mittemeijer, E. J. & Reefman, D. (2000). X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: a revision and allowance for texture and non-uniform fault probabilities. J. Appl. Cryst. 33, 296–306.Google Scholar
Warren, B. E. (1959). X-ray studies of deformed metals. Progr. Met. Phys. 8, 147–202.Google Scholar
Warren, B. E. (1963). Single- and double-deformation faults in face-centered cubic crystals. J. Appl. Phys. 34, 1973–1975.Google Scholar
Warren, B. E. (1990). X-ray Diffraction. New York: Dover Publications. (Unabridged reprint of the original 1969 book.)Google Scholar
Warren, B. E. & Averbach, B. L. (1950). The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21, 595–599.Google Scholar
Warren, B. E. & Averbach, B. L. (1952). The separation of cold-work distortion and particle size broadening in X-ray patterns. J. Appl. Phys. 23, 492.Google Scholar
Welberry, T.R. (2004). Diffuse X-ray Scattering and Models of Disorder. Oxford University Press.Google Scholar
Wilkens, M. (1970a). The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Stat. Solidi A Appl. Res. 2, 359–370.Google Scholar
Wilkens, M. (1970b). Fundamental Aspects of Dislocation Theory, edited by J. A. Simmons, R. de Wit & R. Bullough, Vol. II, pp. 1195–1221. Washington DC: National Institute of Standards and Technology.Google Scholar
Wilkens, M. (1987). X-ray line broadening and mean square strains of straight dislocations in elastically anisotropic crystals of cubic symmetry. Phys. Stat. Solidi A Appl. Res. 104, K1–K6.Google Scholar
Williamson, G. K. & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31.Google Scholar
Wilson, A. J. C. (1942). Imperfections in the structure of cobalt. II. Mathematical treatment of proposed structures. Proc. R. Soc. Lond. Ser. A, 180, 277–285.Google Scholar
Wilson, A. J. C. (1943). The reflexion of X-rays from the `anti-phase nuclei' of AuCu3. Proc. R. Soc. Lond. Ser. A, 181, 360–368.Google Scholar
Wilson, A. J. C. (1963). Mathematical Theory of X-ray Powder Diffractometry. New York: Gordon & Breach.Google Scholar
Wilson, A. J. C. (1969). Variance apparent particle sizes for cylinders, prisms and hemispheres. J. Appl. Cryst. 2, 181–183.Google Scholar
Wilson, A. J. C. & Zsoldos, L. (1966). The reflexion of X-rays from the `anti-phase nuclei' of AuCu3. II. Proc. R. Soc. Lond. Ser. A, 290, 508–514.Google Scholar