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3.6. Whole powder pattern modelling: microstructure determination from powder
diffraction data

M. Leoni

3.6.1. Introduction

X-ray diffraction is a very simple technique, but is one of the

most flexible and powerful tools for the analysis of materials.

The diffraction pattern carries information about the atomic

arrangement and motion at both the short and the long range;

for nanostructured materials this means that a single technique

can simultaneously provide structural and microstructural

information.

Microstructure analysis via X-ray powder diffraction (XRD),

often termed line-profile analysis (LPA), is mostly performed

through the Scherrer (1918) formula. Just a few years after the

discovery of X-ray diffraction, Scherrer derived a very simple

relationship between the width of the diffraction peaks and the

size of the so-called Kristallchen (translated as crystallites), the

coherently scattering (nanocrystalline) domains composing

the colloids that he was studying (the formula is rewritten here

using an updated notation):

hDi ¼ Kw�

FWHMhkl cos �hkl
: ð3:6:1Þ

The calculation of an ‘average size’ hDi is therefore immediate

once the position and full-width at half-maximum of a peak (2�hkl
and FWHMhkl, respectively), measured with X-rays of wave-

length �, are available. The constant Kw (the Scherrer constant)

carries information on the shape of the domains and has an order

of magnitude of 1. Values of the Scherrer constant can be found

in the literature for both isotropic and anisotropic shapes (in the

latter case leading to different sizes for different reflections hkl):

Table 3.6.1 contains the data of Langford & Wilson (1978) for

common domain shapes. An elegant derivation of the Scherrer

formula can be found in the work of Patterson (1939) andWarren

(1990); a summary is also presented in Chapter 5.1.

Its simple mathematical nature is probably the main reason for

the widespread (ab)use of equation (3.6.1). Simple, in fact, does

not mean accurate.

The Scherrer formula and its variants are based on strong

assumptions about the peak shape. In the original derivation

[equation (3.6.1)] the peak was assumed to be Gaussian (see

Appendix A3.6.1 for the definition of a unit-area Gaussian); in

subsequent derivations, the peak-shape information is lost, as the

peak is transformed into an equivalent rectangle via the use of

the integral breadth (IB) � = A/I, where A and I are the area and

the maximum intensity of the peak, respectively (see Table 3.6.1

for the corresponding Scherrer constant values). Together with

this, we should consider that the size of the domains in a real

specimen is always disperse; it can be easily proven that the

quantity hDi, which is called the ‘average size’ or ‘mean size’, is

actually not the mean (first moment) of the size distribution, but

is related to its third moment (i.e. it is volume-weighted). If we

add that the finite size of the domains is not the only source of

peak broadening, we immediately see where the abuse of the

Scherrer formula can lie.

To try to sort some of those issues out, Williamson & Hall

(1953) proposed plotting the FWHM (or the IB) versus the

reciprocal of the lattice spacing (d�hkl ¼ 1=dhkl ¼ 2 sin �hkl=�). For
spherical domains (i.e. size independent of the direction), a

horizontal line is expected. An anisotropic shape would cause a

scattering of the points, whereas other sources of broadening

might also change the slope. Following the findings of Stokes &

Wilson (1944), Williamson and Hall proposed writing the integral

breadth in reciprocal space (reciprocal-space variable d�) as a

combination of the Scherrer formula with the differential of

Bragg’s law:

�ðd�Þ ¼ K�

hDi þ 2ed�: ð3:6:2Þ

Equation (3.6.2) describes a line for which the intercept (extra-

polation of the integral breadth to the origin of the reciprocal

space, i.e. to d!1) is related to the reciprocal of the Scherrer

size, and the slope parameter e accounts for the distribution of

local strain inside the domains. For a Gaussian distribution of this

local strain, the root-mean strain (also known as microstrain)

h"2i1/2 = e
ffiffiffiffiffiffiffiffi

2=�
p

can be obtained. The microstrain, which is mostly

caused by the presence of imperfections, is often quoted together

with the average size.

Even though the Williamson–Hall idea is straightforward,

there is no physical reason why the two terms in equation (3.6.2)

should be added: the only case where breadths are additive is

when the peaks are Lorentzian (see Appendix A3.6.1 for the

definition of a unit-area Lorentzian). The Williamson–Hall

equation is therefore valid for Lorentzian peaks and under the

condition that both the size and strain contributions are

Lorentzian as well. We therefore immediately envisage a problem

here, as the size contribution, described by the Scherrer equation,

was derived in the Gaussian limit. This inconsistency is seldom

reported or considered in the literature. The fact that, in the end,

the profiles are often highly Lorentzian in character mathema-

tically justifies the separation of a size and a strain term, but

dilutes the quantitative meaning of the result.

Modification of the Williamson–Hall approach to remove the

inconsistency of the size- and strain-broadening terms has been

extensively discussed by Balzar & Popović (1996). Using Voigt-

ians (i.e. the convolution of a GaussianG and a Lorentzian L; see

Appendix A3.6.1) to describe a profile, four combinations are

possible for the size and strain terms: L–L, L–G, G–L and G–G.

The Williamson–Hall method corresponds to the L–L case,

whereas the combinations involving a Gaussian size term are

more compatible with the Scherrer formula. Even in those cases,

though, ‘The pure-Gauss size-broadened profile is incompatible

Table 3.6.1
Scherrer constants (Kw and K�) for various domain shapes (Langford &
Wilson, 1978)

Shape Kw (FWHM) K� (integral breadth)

Sphere 0.89 1.07
Cube 0.83–0.91 1.00–1.16
Tetrahedron 0.73–1.03 0.94–1.39
Octahedron 0.82–0.94 1.04–1.14

International Tables for Crystallography (2018). Vol. H, Section 3.6.1, pp. 288–289.
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with the definitions of surface-weighted domain size and column-

length distribution function’ (Balzar & Popović, 1996): integral

breadth methods are therefore intrinsically limited for the

microstructure analysis of real materials. This is in stark contrast

to the fact that equation (3.6.2) is used, for example, by a large

number of Rietveld refinement codes to describe the observed

trend in line-profile broadening (and to perform a rough micro-

structure analysis). This situation can be improved a little

by properly considering at least the anisotropic broadening

component, as performed, for example, in the modified

Williamson–Hall method (MWH; Ungár & Borbély, 1996; Ungár,

2001; Scardi et al., 2004). The results are more accurate and

related to some physical quantities (a dislocation density and a

stacking fault probability), but they are still tightly bound to a

Voigtian profile approximation.

An alternative to the integral breadth methods was developed

by Warren & Averbach (1950, 1952) almost simultaneously with

the idea of Williamson and Hall, but took longer to be fully

employed owing to the lack of fast computing tools. It is based on

the extensive use of Fourier transforms and represents the

starting point of modern line-profile analysis techniques. The

whole profile carries information on the microstructure, as each

point in reciprocal space is related to the Fourier transform of

real space (and thus to the size and shape of the domains and also

the deviation from perfect three-dimensional periodicity). Each

profile also contributes to a better picture of the microstructure,

as it samples along a different direction in space.

For decades, these Fourier methods were only used in a very

small number of scientific areas; the availability of fast computers

and the fast Fourier transform has contributed greatly to their

further diffusion. It is, however, only in recent years that the full

power of the Fourier approach has been unveiled, with the

development of whole-pattern methods and the extension of

most models to a wider range of materials.

3.6.2. Fourier methods

3.6.2.1. Definitions

In the following, the diffraction peaks for a powder will be

described in reciprocal space with reference to the Bragg position

d�fhklg expected for the {hkl} reflection family in the absence of any

type of defect. The coordinate s, where

s ¼ d� � d�fhklg ¼
2

�
sin � � sin �fhklg
� �

; ð3:6:3Þ

will be employed. Moving from reciprocal to diffraction space

(‘2� space’) involves a trivial but nonlinear change of variables:

peaks that are symmetrical in reciprocal space will become

asymmetrical in 2� space and vice versa.

3.6.2.2. Peak profile and the convolution theorem

Each peak profile h(s) in a powder diffraction pattern can be

described as the convolution of an instrumental profile g(s) with a

function f(s) accounting for sample-related effects (micro-

structure; see, for example, Jones, 1938; Alexander, 1954; Klug &

Alexander, 1974; and references therein):

hðsÞ ¼ R

1

�1
f ðyÞgðs� yÞ dy ¼ f � gðsÞ: ð3:6:4Þ

The calculation of the integral in equation (3.6.4) can be

simplified through the use of a Fourier transform (FT). In fact,

the convolution theorem states that the FTof a convolution is the

product of the Fourier transforms of the functions to be folded:

CðLÞ ¼ FT½hðsÞ� ¼ FT½f ðsÞ� � FT½gðsÞ�: ð3:6:5Þ
In this equation, L is the (real) Fourier variable conjugate to s.

The properties of the Fourier transform allow equation (3.6.4) to

be rewritten as

hðsÞ ¼ FT�1½CðLÞ� ¼ FT�1
�

FT½hðsÞ�� ¼ FT�1
�

FT½f ðsÞ�FT½gðsÞ��:
ð3:6:6Þ

This equation is the basis of the Warren–Averbach approach and

also of all modern LPA methods.

3.6.2.3. The Warren–Averbach method and its variations

The convolution theorem can be employed to disentangle the

specimen-related broadening contributions described by f(s). In

fact, let us suppose, as in the Williamson–Hall method, that size

and microstrain are the only two sources of specimen-related

broadening. We call the Fourier transform of the profiles broa-

dened by size and distortion effects only AS
hklðLÞ and AD

hklðLÞ,
respectively. As the size and distortion profiles are folded into f

(s), the following holds:

AðLÞ ¼ FT½f ðsÞ� ¼ FT½hðsÞ�=FT½gðsÞ� ¼ AS
hklðLÞAD

hklðLÞ: ð3:6:7Þ
The separation of the size and distortion terms is straightforward

for spherical domains: the size effects for a sphere are indepen-

dent of the reflection order, whereas those related to distortions

(causing the change in the slope of the Williamson–Hall plot) are

order-dependent. To describe the distortion term it is convenient

to follow the idea of Bertaut (1949a,b, 1950), considering the

specimen as made of columns of cells along the c direction. The

profile due to distortions is calculated by taking the average

phase shift along the column due to the presence of defects. The

analytical formula for the distortion term is thus of the type

AD
hklðLÞ = hexp(2�iLn"L)i, where "L = �L/L is the average

strain along c calculated for a correlation distance (i.e. Fourier

length) L.

As a first-order approximation, the distortion terms give no

profile asymmetry; AD
hklðLÞ is just a cosine Fourier transform. We

can thus expand it as (Warren, 1990)

AD
hklðLÞ ¼ hcosð2�Ln"LÞi ¼ 1� 2�2L2n2h"2Li: ð3:6:8Þ

If we now rewrite equation (3.6.7) on a log scale, taking equation

(3.6.8) into account, we obtain

ln½AhklðLÞ� ¼ ln½AS
hklðLÞ� þ ln½AD

hklðLÞ�
¼ ln½AS

hklðLÞ� þ ln½1� 2�2L2n2h"2Li�
¼ ln½AS

hklðLÞ� � 2�2L2n2h"2Li: ð3:6:9Þ
Equation (3.6.9) represents a line in the variable n2: the intercepts

at increasing L values provide the logarithm of the Fourier size

term, whereas the slopes give the microstrain directly (Warren,

1990). From the size coefficients, we can obtain an average size,

again following the idea of Bertaut (1949a, 1950), related to the

properties of the Fourier transform:

hDi ¼ �@A
S
hklðLÞ
@L

�

�

�

�

L¼0

� ��1

: ð3:6:10Þ

This average size is thus related to the initial slope of the Fourier

coefficients [assuming that they are well behaved, i.e. that the

tangent is always below the AS
hklðLÞ curve].
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