International Tables for Crystallography (2018). Vol. H, ch. 3.7, pp. 304-324
https://doi.org/10.1107/97809553602060000952

Chapter 3.7. Crystallographic databases and powder diffraction

Contents

  • 3.7. Crystallographic databases and powder diffraction   (pp. 304-324) | html | pdf | chapter contents |
    • 3.7.1. Introduction  (pp. 304-305) | html | pdf |
      • 3.7.1.1. History of the PDF/ICDD  (p. 304) | html | pdf |
      • 3.7.1.2. Search/match  (pp. 304-305) | html | pdf |
    • 3.7.2. Powder Diffraction File (PDF)  (pp. 305-313) | html | pdf |
      • 3.7.2.1. Sources and formats of the PDF  (p. 306) | html | pdf |
      • 3.7.2.2. Quality marks in the PDF  (pp. 306-307) | html | pdf |
      • 3.7.2.3. Features of the PDF  (pp. 307-309) | html | pdf |
      • 3.7.2.4. Boolean logic in phase identification  (pp. 309-313) | html | pdf |
        • 3.7.2.4.1. Water-still deposit  (pp. 309-310) | html | pdf |
        • 3.7.2.4.2. Vanadium phosphate butane-oxidation catalyst  (p. 310) | html | pdf |
        • 3.7.2.4.3. Valve deposit from a piston aviation engine  (p. 310) | html | pdf |
        • 3.7.2.4.4. Isocracker sludge  (pp. 310-311) | html | pdf |
        • 3.7.2.4.5. Amoxicillin  (pp. 311-312) | html | pdf |
        • 3.7.2.4.6. Pseudoephedrine  (p. 312) | html | pdf |
        • 3.7.2.4.7. Commercial multivitamin: Centrum A to Zn  (pp. 312-313) | html | pdf |
    • 3.7.3. Cambridge Structural Database (CSD)  (pp. 313-314) | html | pdf |
      • 3.7.3.1. Mercury  (p. 314) | html | pdf |
    • 3.7.4. Inorganic Crystal Structure Database (ICSD)  (pp. 314-316) | html | pdf |
      • 3.7.4.1. General features of the ICSD  (p. 315) | html | pdf |
      • 3.7.4.2. Features particularly useful for powder crystallography  (pp. 315-316) | html | pdf |
    • 3.7.5. Pearson's Crystal Data (PCD/LPF) (with Pierre Villars and Karen Cenzual)  (pp. 316-318) | html | pdf |
      • 3.7.5.1. General information  (p. 316) | html | pdf |
      • 3.7.5.2. Evaluation procedure  (p. 316) | html | pdf |
      • 3.7.5.3. Standardized crystallographic data  (pp. 316-317) | html | pdf |
      • 3.7.5.4. Consequent prototype assignment  (p. 317) | html | pdf |
      • 3.7.5.5. Assigned atom coordinates  (p. 317) | html | pdf |
      • 3.7.5.6. External links  (p. 317) | html | pdf |
      • 3.7.5.7. Retrievable database fields  (pp. 317-318) | html | pdf |
      • 3.7.5.8. Particular software features  (p. 318) | html | pdf |
    • 3.7.6. Metals data file (CRYSTMET)  (p. 318) | html | pdf |
    • 3.7.7. Protein Data Bank (PDB)  (pp. 318-319) | html | pdf |
      • 3.7.7.1. Powder diffraction by proteins  (pp. 318-319) | html | pdf |
      • 3.7.7.2. Calculation of protein powder patterns (with Kenny Ståhl)  (p. 319) | html | pdf |
    • 3.7.8. Crystallography Open Database (COD) (with Saulius Gražulis)  (pp. 319-321) | html | pdf |
    • 3.7.9. Other internet databases  (p. 321) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 3.7.1. A plot generated by the Results/Graph Fields function in the Powder Diffraction File  (p. 309) | html | pdf |
      • Fig. 3.7.2. The result of applying a commercial search/match program (Jade 9.5; Materials Data, 2012) to the powder pattern of a water-still scale  (p. 309) | html | pdf |
      • Fig. 3.7.3. Variation of the unit-cell volume with the magnesium content in magnesian calcites in the Powder Diffraction File  (p. 310) | html | pdf |
      • Fig. 3.7.4. The results of applying a commercial search/match program (Jade 9.5; Materials Data, 2012) to the (background-subtracted, Kα2-stripped) powder pattern of a butane-oxidation catalyst  (p. 311) | html | pdf |
      • Fig. 3.7.5. Comparison of the low-quality experimental PDF entry 00-047-0967 with the high-quality calculated pattern 01-074-2749 located by searching the experimental pattern against the rest of the PDF  (p. 311) | html | pdf |
      • Fig. 3.7.6. The four crystalline phases identified in a butane-oxidation catalyst  (p. 311) | html | pdf |
      • Fig. 3.7.7. The four phases identified in a valve deposit from an aircraft engine by automated search/match methods and guessing based on the appearance of the sample  (p. 312) | html | pdf |
      • Fig. 3.7.8. The seven phases identified in the valve deposit from an aircraft engine  (p. 312) | html | pdf |
      • Fig. 3.7.9. The phases identified in a deposit from a refinery isocracker  (p. 312) | html | pdf |
      • Fig. 3.7.10. The final Rietveld plot from refinement of the isocracker deposit  (p. 313) | html | pdf |
      • Fig. 3.7.11. Phases identified in amoxicillin powder from a commercial capsule  (p. 313) | html | pdf |
      • Fig. 3.7.12. Phases identified by automated search/match in a Centrum A to Zn multivitamin tablet  (p. 313) | html | pdf |
      • Fig. 3.7.13. Overview of the trends from the different corrections  (p. 319) | html | pdf |
      • Fig. 3.7.14. Calculated and experimental powder patterns for (a) lysozyme, (b) trigonal insulin and (c) cubic insulin  (p. 320) | html | pdf |
      • Fig. 3.7.15. (a) The website and search interface of the Crystallography Open Database (COD) permits searches of crystallographic data by a range of parameters and unrestricted retrieval of the found data  (p. 320) | html | pdf |
    • Tables
      • Table 3.7.1. Criteria for the assignment of quality marks to calculated patterns in the Powder Diffraction File  (p. 308) | html | pdf |