Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.7, pp. 304-324

Chapter 3.7. Crystallographic databases and powder diffraction

J. A. Kaduka,b,c*

aDepartment of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA,bDepartment of Physics, North Central College, 131 South Loomis Street, Naperville, IL 60540, USA, and cPoly Crystallography Inc., 423 East Chicago Avenue, Naperville, IL 60540, USA
Correspondence e-mail:


Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D66, 213–221.Google Scholar
Allaire, M., Moiseeva, N., Botez, C. E., Engel, M. A. & Stephens, P. W. (2009). On the possibility of using polycrystalline material in the development of structure-based generic assays. Acta Cryst. D65, 379–382.Google Scholar
Allen, F. H., Cole, J. C. & Verdonk, M. L. (2011). The relevance of the Cambridge Structural Database in protein crystallography. International Tables for Crystallography, Vol. F, 2nd ed., edited by E. Arnold, D. M. Himmel & M. G. Rossmann, pp. 736–748. Chichester: Wiley.Google Scholar
Allmann, R. & Hinek, R. (2007). The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Cryst. A63, 412–417.Google Scholar
Barr, G., Dong, W. & Gilmore, C. J. (2009). PolySNAP3: a computer program for analysing and visualizing high-throughput data from diffraction and spectroscopic sources. J. Appl. Cryst. 42, 965–974.Google Scholar
Barr, G., Gilmore, C. J. & Paisley, J. (2004). SNAP-1D: a computer program for qualitative and quantitative powder diffraction pattern analysis using the full pattern profile. J. Appl. Cryst. 37, 665–668.Google Scholar
Basso, S., Besnard, C., Wright, J. P., Margiolaki, I., Fitch, A., Pattison, P. & Schiltz, M. (2010). Features of the secondary structure of a protein molecule from powder diffraction data. Acta Cryst. D66, 756–761.Google Scholar
Baumann, D., Sedlmaier, S. J. & Schnick, W. (2012). An unprecedented AB2 tetrahedra network structure type in a high-pressure phase of phosphorus oxonitride (PON). Angew. Chem. Int. Ed. 51, 4707–4709.Google Scholar
Behrens, H. & Luksch, P. (2006). A bibliometric study in crystallography. Acta Cryst. B62, 993–1001.Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Cryst. B58, 364–369.Google Scholar
Bergerhoff, G. & Brandenburg, K. (1999). Typical interatomic distances: inorganic compounds. International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 770–781. Dordrecht: Kluwer Academic Publishers.Google Scholar
Bergerhoff, G. & Brown, I. D. (1987). Crystallographic Databases, edited by F. H. Allen, G. Bergerhoff & R. Sievers. Chester: International Union of Crystallography.Google Scholar
Berman, H. M., Henrick, K., Kleywegt, G., Nakamura, H. & Markley, J. (2011). The Worldwide Protein Data Bank. International Tables for Crystallography, Vol. F, 2nd ed., edited by E. Arnold, D. M. Himmel & M. G. Rossmann, pp. 827–832. Chichester: Wiley.Google Scholar
Berman, H., Henrick, K. & Nakamura, H. (2003). Announcing the Worldwide Protein Data Bank. Nature Struct. Mol. Biol. 10, 980.Google Scholar
Berndt, M. (1994). Thesis, University of Bonn, Germany. Updates by O. Shcherban, SCC Structure-Properties Ltd, Lviv, Ukraine.Google Scholar
Berndt, M. (2003). Open crystallographic database – a role for whom? .Google Scholar
Bigelow, W. C. & Smith, J. V. (1964). Two new indexes to the Powder Diffraction File. ASTM Spec. Tech. Publ. STP372, 54. .Google Scholar
Boldyrev, A. K., Mikheev, V. I., Dubinina, V. N. & Dovalev, G. A. (1938). X-ray determination tables for minerals, Ft. I. Ann. Inst. Mines Leningrad, 11, 1–157.Google Scholar
Boles, M. O., Girven, R. J. & Gane, P. A. C. (1978). The structure of amoxycillin trihydrate and a comparison with the structures of ampicillin. Acta Cryst. B34, 461–466.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques. Paris: Gathier Villars.Google Scholar
Bruker-AXS (2013). Crystallography Open Database for DIFFRAC.EVA. .Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Cryst. B58, 389–397.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.Google Scholar
Caussin, P., Nusinovici, J. & Beard, D. W. (1988). Using digitized X-ray powder diffraction scans as input for a new PC-At search/match program. Adv. X-ray Anal. 31, 423–430.Google Scholar
Caussin, P., Nusinovici, J. & Beard, D. W. (1989). Specific data handling techniques and new enhancements in a search-match program. Adv. X-­ray Anal. 32, 531–538.Google Scholar
Cenzual, K., Berndt, M., Brandenburg, K., Luong, V., Flack, E. & Villars, P. (2000). ESDD software package. Updates by O. Shcherban, SCC Structure-Properties Ltd, Lviv, Ukraine.Google Scholar
Chateigner, D. (2010). Crystallography Open Database Mirror at ENSICAEN. .Google Scholar
Cherukuri, S. C., Snyder, R. L. & Beard, D. W. (1983). Comparison of the Hanawalt and Johnson–Vand computer search/match strategies. Adv. X-ray Anal. 26, 99–104.Google Scholar
Chipera, S. J. & Bish, D. L. (2002). FULLPAT: a full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. J. Appl. Cryst. 35, 744–749.Google Scholar
Corey, R. B. & Wyckoff, R. W. G. (1936). Long spacings in macromolecular solids. J. Biol. Chem. 114, 407–414.Google Scholar
Crystal Impact (2012). Match! v.2. Crystal Impact, Bonn, Germany.Google Scholar
Davey, W. P. (1922). A new X-ray diffraction apparatus. Gen. Elec. Rev. 25, 565.Google Scholar
Davey, W. P. (1934). Study of Crystal Structure and Its Applications. New York: McGraw-Hill.Google Scholar
Debye, P. & Scherrer, P. (1916). Interference on inordinate orientated particles in Roentgen light. Phys. Z. 17, 277–283.Google Scholar
Debye, P. & Scherrer, P. (1917). Interference on inordinate orientated particles in X-ray light. III. Phys. Z. 18, 291–301.Google Scholar
Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). The HighScore suite. Powder Diffr. 29, S13–S18.Google Scholar
Dilanian, R. A., Darmanin, C., Varghese, J. N., Wilkins, S. W., Oka, T., Yagi, N., Quiney, H. M. & Nugent, K. A. (2011). A new approach for structure analysis of two-dimensional membrane protein crystals using X-ray powder diffraction data. Protein Sci. 20, 457–464.Google Scholar
Donnay, J. D. H. & Harker, D. (1937). A new law of crystal morphology extending the law of Bravais. Am. Mineral. 22, 463–467.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R. & Blanton, T. N. (2017). Chemical analysis by diffraction: the Powder Diffraction File. Powder Diffr. 32, 63–71.Google Scholar
First, E. L. & Floudas, C. A. (2013). MOFomics: computational pore characterization of metal–organic frameworks. Microporous Mesoporous Mater. 165, 32–39.Google Scholar
Fokine, A. & Urzhumtsev, A. (2002). Flat bulk-solvent model: obtaining optimal parameters. Acta Cryst. D58, 1387–1392.Google Scholar
Frankaer, C. G., Harris, P. & Ståhl, K. (2011). A sample holder for in-house X-ray powder diffraction studies of protein powders. J. Appl. Cryst. 44, 1288–1290.Google Scholar
Frericks Schmidt, H. L., Sperling, L. J., Gao, Y. G., Wylie, B. J., Boettcher, J. M., Wilson, S. R. & Rienstra, C. M. (2007). Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J. Phys. Chem. B, 111, 14362–14369.Google Scholar
Frevel, L. K. (1965). Computational aids for identifying crystalline phases by powder diffraction. Anal. Chem. 37, 471–482.Google Scholar
Frevel, L. K., Adams, C. E. & Ruhberg, L. R. (1976). A fast search-match program for powder diffraction analysis. J. Appl. Cryst. 9, 199–204.Google Scholar
Friedel, G. (1907). Etudes sur la loi de Bravais. Bull. Soc. Fr. Miner. 30, 326–455.Google Scholar
Fujii, K., Young, M. T. & Harris, K. D. M. (2011). Exploiting powder X-­ray diffraction for direct structure determination in structural biology: the P2X4 receptor trafficking motif YEQGL. J. Struct. Biol. 174, 461–467.Google Scholar
Gelato, L. M. & Parthé, E. (1987). STRUCTURE TIDY – a computer program to standardize crystal structure data. J. Appl. Cryst. 20, 139–143.Google Scholar
Gilmore, C. J., Barr, G. & Paisley, J. (2004). High-throughput powder diffraction. I. A new approach to qualitative and quantitative powder diffraction pattern analysis using full pattern profiles. J. Appl. Cryst. 37, 231–242.Google Scholar
Goehner, R. P. & Garbauskas, M. F. (1984). PDIDENT – a set of programs for powder diffraction phase identification. X-ray Spectrom. 13, 172–179.Google Scholar
Gražulis, S. (2007). COD Mirror in Vilnius. .Google Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Cryst. 42, 726–729.Google Scholar
Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. & Le Bail, A. (2012). Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40, D420–D427.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). The Cambridge Structural Database. Acta Cryst. B72, 171–179.Google Scholar
Grosse-Kunstleve, R. & Gildea, R. (2011). Computational Crystallo­graphy Initiative: COD stats. .Google Scholar
Hanawalt, J. D. (1983). History of the Powder Diffraction File (PDF). Crystallography in North America, edited by D. McLachlan & J. P. Glusker, pp. 215–219. Buffalo: American Crystallographic Association.Google Scholar
Hanawalt, J. D. (1986). Manual search/match methods for powder diffraction in 1986. Powder Diffr. 1, 7–13.Google Scholar
Hanawalt, J. D. & Rinn, H. W. (1936). Identification of crystalline materials. Ind. Eng. Chem. Anal. Ed. 8, 244–247.Google Scholar
Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10, 457–512.Google Scholar
Hanson, R. M. (2010). Jmol – a paradigm shift in crystallographic visualization. J. Appl. Cryst. 43, 1250–1260.Google Scholar
Hanson, R. M. (2013). Jmol: an open-source Java viewer for chemical structures in 3D. .Google Scholar
Harju, P. & Pasek, P. (1983). Vanadium–hydrogen–phosphorus–oxygen catalytic material. US Patent 4374756; PDF entry 00-047-0967.Google Scholar
Hartmann, C. G., Nielsen, O. F., Ståhl, K. & Harris, P. (2010). In-house characterization of protein powder. J. Appl. Cryst. 43, 876–882.Google Scholar
Hellenbrandt, M. (2004). The Inorganic Crystal Structure Database (ICSD) – present and future. Crystallogr. Rev. 10, 17–22.Google Scholar
Helliwell, J. R., Bell, A. M. T., Pryant, P., Fisher, S. J., Habash, G., Helliwell, M., Margiolaki, I., Kaenket, S., Watier, Y., Wright, J. P. & Yalamanchilli, S. (2010). Time-dependent analysis of K2PtBr6 binding to lysozyme studied by protein powder and single crystal X-ray analysis. Z. Kristallogr. 225, 570–575.Google Scholar
Hirakura, Y., Yamaguchi, H., Mizuno, M., Miyanishi, H., Ueda, S. & Kitamura, S. (2007). Detection of lot-to-lot variations in the amorphous microstructure of lyophilized protein formulations. Int. J. Pharm. 340, 34–41.Google Scholar
Huang, T. C. & Parrish, W. (1982). A new computer algorithm for qualitative X-ray powder diffraction analysis. Adv. X-ray Anal. 25, 213–219.Google Scholar
Hull, A. W. (1919). A new method of chemical analysis. J. Am. Chem. Soc. 41, 1168–1175.Google Scholar
Hull, A. W. (1983). An account of early studies at Schenectady. Crystallography in North America, edited by D. McLachlan & J. P. Glusker, p. 32. Buffalo: American Crystallographic Association.Google Scholar
Hutchison, G. R. (2007). OpenBabel: The Open Source Chemistry Toolbox. .Google Scholar
ICDD (2016). PDF-4+ 2016 (Database). Newtown Square: International Centre for Diffraction Data. .Google Scholar
Jenkins, R. & Rose, R. N. (1990). Don Hanawalt – early days and his contribution to qualitative powder diffractometry. Powder Diffr. 5, 70–75.Google Scholar
Jiang, J.-S. & Brünger, A. T. (1994). Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115.Google Scholar
Jobst, B. A. & Goebel, H. E. (1982). IDENT – a versatile microfile-based system for fast interactive XRPD phase analysis. Adv. X-ray Anal. 25, 273–282.Google Scholar
Johnson, G. G. Jr & Vand, V. (1967). A computerized powder diffraction identification system. Ind. Eng. Chem. 59, 19–31.Google Scholar
Johnson, G. G. Jr & Vand, V. (1968). Computerized multiphase X-ray powder diffraction identification system. Adv. X-ray Anal. 11, 376–384.Google Scholar
Kaduk, J. A. (2002). Use of the Inorganic Crystal Structure Database as a problem solving tool. Acta Cryst. B58, 370–379.Google Scholar
Kleywegt, G. J., Harris, M. R., Zou, J., Taylor, T. C., Wählby, A. & Jones, T. A. (2004). The Uppsala Electron-Density Server. Acta Cryst. D60, 2240–2249.Google Scholar
Le Bail, A. (2005). Inorganic structure prediction with GRINSP. J. Appl. Cryst. 38, 389–395.Google Scholar
Le Page, Y. (1987). Computer derivation of the symmetry elements implied in a structure description. J. Appl. Cryst. 20, 264–269.Google Scholar
Le Page, Y. (1988). MISSYM1.1 – a flexible new release. J. Appl. Cryst. 21, 983–984.Google Scholar
Lutterotti, L. (2012). Qualitative Phase Analysis: Method Developments. In Uniting Electron Crystallography and Powder Diffraction, pp. 233–242. Dordrecht: Springer.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41, 466–470.Google Scholar
Margiolaki, I. & Wright, J. P. (2008). Powder crystallography on macromolecules. Acta Cryst. A64, 169–180.Google Scholar
Margiolaki, I., Wright, J. P., Wilmanns, M., Fitch, A. N. & Pinotsis, N. (2007). Second SH3 domain of ponsin solved from powder diffraction. J. Am. Chem. Soc. 129, 11865–11871.Google Scholar
Marquart, R. G. (1986). μPDSM: mainframe search/match on an IBM PC. Powder Diffr. 1, 34–39.Google Scholar
Marquart, R. G., Katsnelson, I., Milne, G. W. A., Heller, S. R., Johnson, G. G. & Jenkins, R. (1979). A search-match system for X-ray powder diffraction data. J. Appl. Cryst. 12, 629–634.Google Scholar
Materials Data (2016). Jade 9.6. Livermore: Materials Data Inc. .Google Scholar
Mighell, A. D. (2003). The normalized reduced form and cell mathematical tools for lattice analysis – symmetry and similarity. J. Res. Natl Inst. Stand. Technol. 108, 447–452.Google Scholar
Mighell, A. D. & Himes, V. L. (1986). Compound identification and characterization using lattice-formula matching techniques. Acta Cryst. A42, 101–105.Google Scholar
Moeck, P. (2004). EDU-COD: Educational Subset of COD. .Google Scholar
Moeck, P. (2007a). Crystallography Open Database Mirror in North America. .Google Scholar
Moeck, P. (2007b). Alternative COD search interface at Portland State University. .Google Scholar
Moews, P. C. & Kretsinger, R. H. (1975). Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J. Mol. Biol. 91, 201–225.Google Scholar
Nichols, M. (1966). A Fortran Program for the Identification of X-ray Powder Diffraction Patterns. Report UCRL-70078, Lawrence Livermore National Laboratory, USA.Google Scholar
Norrman, M., Ståhl, K., Schluckebier, G. & Al-Karadaghi, S. (2006). Characterization of insulin microcrystals using powder diffraction and multivariate data analysis. J. Appl. Cryst. 39, 391–400.Google Scholar
Nusinovici, J. & Bertelmann, D. (1993). Practical determination of the acceptable 2θ error for non-ambiguous identification of pure phases with DIFFRAC-AT. Adv. X-ray Anal. 36, 327–332.Google Scholar
Nusinovici, J. & Winter, M. J. (1994). Diffrac-At search: search/match using full traces as input. Adv. X-ray Anal. 37, 59–66.Google Scholar
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. & Hutchison, G. R. (2011). Open Babel: an open chemical toolbox. J. Cheminf. 3, 33.Google Scholar
O'Connor, B. H. & Bagliani, F. (1976). A semi-automated system for identifying crystalline materials with powder diffraction data. J. Appl. Cryst. 9, 419–423.Google Scholar
Oxford Cryosystems (2012). Crystallographica Search-Match (CSM). Oxford: Oxford Cryosystems Ltd. .Google Scholar
PANalytical (2012a). HighScore Plus. Almelo: PANalytical B.V.Google Scholar
PANalytical (2012b). The COD database files for the PANalytical HighScore or HighScore Plus software packages. .Google Scholar
Papageorgiou, N., Watier, Y., Saunders, L., Coutard, B., Lantez, V., Gould, E. A., Fitch, A. N., Wright, J. P., Canard, B. & Margiolaki, I. (2010). Preliminary insights into the non structural protein 3 macro domain of the Mayaro virus by powder diffraction. Z. Kristallogr. 225, 576–580.Google Scholar
Parrish, W. (1983). History of the X-ray powder method in the USA. Crystallography in North America, edited by D. McLachlan & J. P. Glusker, pp. 201–214. Buffalo: American Crystallographic Association.Google Scholar
Parthé, E., Cenzual, K. & Gladyshevskii, R. (1993). Standardization of crystal structure data as an aid to the classification of crystal structure types. J. Alloys Compd, 197, 291–301.Google Scholar
Parthé, E. & Gelato, L. M. (1984). The standardization of inorganic crystal-structure data. Acta Cryst. A40, 169–183.Google Scholar
Parthé, E. & Gelato, L. M. (1985). The `best' unit cell for monoclinic structures consistent with b axis unique and cell choice 1 of International Tables for Crystallography (1983). Acta Cryst. A41, 142–151.Google Scholar
Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual K. & Gladyshevskii, R. (1993, 1994). TYPIX – Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Heidelberg: Springer. .Google Scholar
Phillips, S. E. V. (1980). Structure and refinement of oxymyoglobin at 1.6 Å resolution. J. Mol. Biol. 142, 531–554.Google Scholar
Pophale, R., Daeyaert, F. & Deem, M. W. (2013). Computational prediction of chemically-synthesizable organic structure directing agents for zeolites. J. Mater. Chem. A, 1, 6750–6760.Google Scholar
Quirós-Olozábal, M. (2006). COD Mirror of Granada University. .Google Scholar
Rajan, H., Uchida, H., Bryan, D., Swaminathan, R., Downs, R. M. & Hall-Wallace, M. (2006). Building the American Mineralogist Crystal Structure Database: A recipe for construction of a small internet database. Geoinformatics: Data to Knowledge, edited by A. Sinha. McLean: Geological Society of America. .Google Scholar
Rigaku (2011). COD for PDXL: Integrated Powder X-ray Diffraction Software. .Google Scholar
Rotella, F. J., Duke, N. & Kaduk, J. A. (1998). X-ray powder diffraction from biological macromolecules. What do we see? What can we tell? American Crystallographic Association Meeting Abstracts, Washington DC, 18–23 July. Buffalo: American Crystallographic Association.Google Scholar
Rotella, F. J., Duke, N. & Kaduk, J. A. (2000). Powder diffraction from biological macromolecules using synchrotron X-rays. American Crystallographic Association Meeting Abstracts, St Paul MN, 22–27 July. Buffalo: American Crystallographic Association.Google Scholar
Schreiner, W. N., Surdukowski, C. & Jenkins, R. (1982). A new minicomputer search/match/identify program for qualitative phase analysis with the powder diffractometer. J. Appl. Cryst. 15, 513–523.Google Scholar
Shpeizer, B., Ouyang, X., Heising, J. M. & Clearfield, A. (2001). Synthesis and crystal structure of a new vanadyl phosphate [H0.6(VO)3(PO4)3(H2O)3].4H2O and its conversion to porous products. Chem. Mater. 13, 2288–2296.Google Scholar
Sidey, V. (2013). On the shortest BIII—O bonds. Acta Cryst. B69, 86–89.Google Scholar
Sietronics (2012). Siroquant v.4. Canberra: Sietronics. .Google Scholar
Snyder, R. L. (1981). A Hanawalt type phase identification procedure for a minicomputer. Adv. X-ray Anal. 24, 83–90.Google Scholar
Ståhl, K., Frankaer, C. G., Petersen, J. & Harris, P. (2013). Monitoring protein precipitates by in-house X-ray powder diffraction. Powder Diffr. 28, S448–S457.Google Scholar
Toby, B. H., Harlow, R. L. & Holomany, M. A. (1990). The POWDER SUITE: computer programs for searching and accessing the JCPDS-ICDD powder diffraction database. Powder Diffr. 5, 2–7.Google Scholar
Villars, P. (1997). Pearson's Desk Edition, Vols. 1–2. Materials Park: ASM International.Google Scholar
Villars, P. & Calvert, L. D. (1985). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 1st Ed., Vols. 1–3. Materials Park: ASM International.Google Scholar
Villars, P. & Calvert, L. D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Ed., Vols. 1–4. Materials Park: ASM International.Google Scholar
Villars, P. & Cenzual, K. (2013). Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds (CD-ROM). Materials Park: ASM International.Google Scholar
Villars, P., Onodera, N. & Iwata, S. (1998). The Linus Pauling File (LPF) and its application to materials design. J. Alloys Compd, 279, 1–7.Google Scholar
Von Dreele, R. B. (1998). Protein structures by powder diffraction? Abstr. Pap. Am. Chem. Soc. 215, U759.Google Scholar
Von Dreele, R. B. (1999). Combined Rietveld and stereochemical restraint refinement of a protein crystal structure. J. Appl. Cryst. 32, 1084–1089.Google Scholar
Von Dreele, R. B. (2003). Protein crystal structure analysis from high-resolution X-ray powder-diffraction data. Methods Enzymol. 368, 254–267.Google Scholar
Von Dreele, R. B. (2007a). Binding of N-acetylglucosamine oligosaccharides to hen egg-white lysozyme: a powder diffraction study. Acta Cryst. D61, 22–32.Google Scholar
Von Dreele, R. B. (2007b). Multipattern Rietveld refinement of protein powder data: an approach to higher resolution. J. Appl. Cryst. 40, 133–143.Google Scholar
Von Dreele, R. B., Stephens, P. W., Smith, G. D. & Blessing, R. H. (2000). The first protein crystal structure determined from high-resolution X-­ray powder diffraction data: a variant of T3R3 human insulin–zinc complex produced by grinding. Acta Cryst. D56, 1549–1553.Google Scholar
Waldo, A. W. (1935). Identification of the copper ore minerals by means of X-ray powder diffraction patterns. Am. Mineral. 20, 575–597.Google Scholar
White, P. S., Rodgers, J. R. & Le Page, Y. (2002). CRYSTMET: a database of the structures and powder patterns of metals and intermetallics. Acta Cryst. B58, 343–348.Google Scholar
Winchell, A. N. (1927). Further studies in the mica group. Am. Mineral. 12, 267–279.Google Scholar
Wolff, P. M. de (2016). International Tables for Crystallography, Vol. A, 6th ed., edited by M. I. Aroyo, pp. 709–714. Chichester: Wiley.Google Scholar
Wyckoff, R. W. G. & Corey, R. B. (1936). X-ray diffraction patterns of crystalline tobacco mosaic proteins. J. Biol. Chem. 116, 51–55.Google Scholar