Tables for
Volume H
Powder diffraction
Edited by C. J. Gilmore, J. A. Kaduk and H. Schenk

International Tables for Crystallography (2018). Vol. H, ch. 3.8, pp. 325-343

Chapter 3.8. Clustering and visualization of powder-diffraction data

C. J. Gilmore,a G. Barra and W. Donga*

aDepartment of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
Correspondence e-mail:


Alvarez, A. J., Singh, A. & Myerson, A. S. (2009). Polymorph screening: comparing a semi-automated approach with a high throughput method. Cryst. Growth Des. 9, 4181–4188.Google Scholar
Asimov, D. (1985). The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput. 6, 128–143.Google Scholar
Barr, G., Cunningham, G., Dong, W., Gilmore, C. J. & Kojima, T. (2009). High-throughput powder diffraction V: the use of Raman spectroscopy with and without X-ray powder diffraction data. J. Appl. Cryst. 42, 706–714.Google Scholar
Barr, G., Dong, W. & Gilmore, C. J. (2004a). High-throughput powder diffraction. II. Applications of clustering methods and multivariate data analysis. J. Appl. Cryst. 37, 243–252.Google Scholar
Barr, G., Dong, W. & Gilmore, C. J. (2004b). High-throughput powder diffraction. IV. Cluster validation using silhouettes and fuzzy clustering. J. Appl. Cryst. 37, 874–882.Google Scholar
Barr, G., Dong, W. & Gilmore, C. J. (2004c). PolySNAP: a computer program for analysing high-throughput powder diffraction data. J. Appl. Cryst. 37, 658–664.Google Scholar
Barr, G., Dong, W. & Gilmore, C. J. (2009). PolySNAP3: a computer program for analysing and visualizing high-throughput data from diffraction and spectroscopic sources. J. Appl. Cryst. 42, 965–974.Google Scholar
Barr, G., Dong, W., Gilmore, C. & Faber, J. (2004). High-throughput powder diffraction. III. The application of full-profile pattern matching and multivariate statistical analysis to round-robin-type data sets. J. Appl. Cryst. 37, 635–642.Google Scholar
Barr, G., Gilmore, C. J. & Paisley, J. (2004). SNAP-1D: a computer program for qualitative and quantitative powder diffraction pattern analysis using the full pattern profile. J. Appl. Cryst. 37, 665–668.Google Scholar
Boccaleri, E., Carniato, F., Croce, G., Viterbo, D., van Beek, W., Emerich, H. & Milanesio, M. (2007). In situ simultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions. J. Appl. Cryst. 40, 684–693.Google Scholar
Bruker (2018). DIFFRAC.EVA: software to evaluate X-ray diffraction data. Version 4.3. .Google Scholar
Butler, B. M., Sila, A., Nyambura, K. D., Gilmore, C. J., Kourkoumelis, N. & Hillier, S. (2019). Pre-treatment of soil X-ray powder diffraction data for cluster analysis. Geoderma, 337, 413–424.Google Scholar
Calinški, T. & Harabasz, J. (1974). A dendritic method for cluster analysis. Commun. Stat. 3, 1–27.Google Scholar
Carroll, J. D. & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via n-way generalization of `Eckhart–Young' decomposition. Psychometria, 35, 283–319.Google Scholar
Cook, D. & Swayne, D. F. (2007). Interactive and Dynamic Graphics for Data Analysis with R and GGobi. New York: Springer.Google Scholar
Cox, T. F. & Cox, M. A. A. (2000). Multidimensional Scaling, 2nd ed. Boca Raton: Chapman & Hall/CRC.Google Scholar
Crawley, M. J. (2007). The R Book. Chichester: Wiley.Google Scholar
Cressey, G. & Schofield, P. F. (1996). Rapid whole-pattern profile-stripping method for the quantification of multiphase samples. Powder Diffr. 11, 35–39.Google Scholar
Dong, W., Gilmore, C., Barr, G., Dallman, C., Feeder, N. & Terry, S. (2008). A quick method for the quantitative analysis of mixtures. 1. Powder X-ray diffraction. J. Pharm. Sci. 97, 2260–2276.Google Scholar
Donoho, D. L. & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224.Google Scholar
Everitt, B. S., Landau, S. & Leese, M. (2001). Cluster Analysis, 4th ed. London: Arnold.Google Scholar
Gilmore, C. J., Barr, G. & Paisley, W. (2004). High-throughput powder diffraction. I. A new approach to qualitative and quantitative powder diffraction pattern analysis using full pattern profiles. J. Appl. Cryst. 37, 231–242.Google Scholar
Goodman, L. A. & Kruskal, W. H. (1954). Measures of association for cross-classifications. J. Am. Stat. Assoc. 49, 732–764.Google Scholar
Gordon, A. D. (1981). Classification, 1st ed., pp. 46–49. London: Chapman and Hall.Google Scholar
Gordon, A. D. (1999). Classification, 2nd ed. Boca Raton: Chapman and Hall/CRC.Google Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–328.Google Scholar
Gower, J. C. & Dijksterhuis, G. B. (2004). Procrustes Problems. Oxford University Press.Google Scholar
Herrmann, M. J. & Engel, W. (1997). Phase transitions and lattice dynamics of ammonium nitrate. Propellants Explos. Pyrotech. 22, 143–147.Google Scholar
Husson, F. & Pagès, J. (2006). INDSCAL model: geometrical interpretation and methodology. Comput. Stat. Data Anal. 50, 358–378.Google Scholar
ICDD (2018). The Powder Diffraction File. International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, Pennsylvania 19073-3273, USA.Google Scholar
Inselberg, A. (1985). The plane with parallel coordinates. Vis. Comput. 1, 69–91.Google Scholar
Inselberg, A. (2009). Parallel Coordinates. Visual multidimensional geometry and its applications. New York: Springer.Google Scholar
Kaufman, L. & Rousseeuw, P. J. (1990). Finding Groups in Data. New York: Wiley.Google Scholar
Kojima, T., Onoue, S., Murase, N., Katoh, F., Mano, T. & Matsuda, Y. (2006). Crystalline form information from multiwell plate salt screening by use of Raman microscopy. Pharm. Res. 23, 806–812.Google Scholar
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50.Google Scholar
Lance, G. N. & Williams, W. T. (1967). A general theory of classificatory sorting strategies: 1. Hierarchical systems. Comput. J. 9, 373–380.Google Scholar
Leroux, J., Lennox, D. H. & Kay, K. (1953). Direct quantitative X-ray analysis by diffraction absorption technique. Anal. Chem. 25, 740–743.Google Scholar
Mehrens, S. M., Kale, U. J. & Qu, X. (2005). Statistical analysis of differences in the Raman spectra of polymorphs. J. Pharm. Sci. 94, 1354–1367.Google Scholar
Milligan, G. W. & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159–179.Google Scholar
Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. Comput. J. 7, 308–313.Google Scholar
O'Brien, L. E., Timmins, P., Williams, A. C. & York, P. (2004). Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs. J. Pharm. Biomed. Anal. 36, 335–340.Google Scholar
Ogden, R. T. (1997). Essential Wavelets for Statistical Applications and Data Analysis, pp. 144–148. Boston: Birkhäuser.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (2007). Numerical Recipes. 3rd ed. Cambridge University Press..Google Scholar
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65.Google Scholar
Sato, M., Sato, Y. & Jain, L. C. (1966). Fuzzy Clustering Models and Applications. New York: Physica-Verlag.Google Scholar
Smith, D. K., Johnson, G. G. & Wims, A. M. (1988). Use of full diffraction spectra, both experimental and calculated, in quantitative powder diffraction analysis. Aust. J. Phys. 41, 311–321.Google Scholar
Smrčok, Ĺ., Ďurík, M. & Jorík, V. (1999). Wavelet denoising of powder diffraction patterns. Powder Diffr. 14, 300–304.Google Scholar
Spearman, C. (1904). The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101.Google Scholar
Storey, R., Docherty, R., Higginson, P., Dallman, C., Gilmore, C., Barr, G. & Dong, W. (2004). Automation of solid form screening procedures in the pharmaceutical industry–how to avoid the bottlenecks. Crystallogr. Rev. 10, 45–56.Google Scholar
Wegman, E. J. (1990). Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85, 664–675.Google Scholar