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3.8. Clustering and visualization of powder-diffraction data

C. J. Gilmore, G. Barr and W. Dong

3.8.1. Introduction

In high-throughput crystallography, crystallization experiments

using robotics coupled with automatic sample changers and two-

dimensional (2D) detectors can generate and measure over 1000

powder-diffraction patterns on a series of related compounds,

often polymorphs or salts, in a day (Storey et al., 2004). It is also

possible to simultaneously measure spectroscopic data, especially

Raman (Alvarez et al., 2009). The analysis of these patterns poses

a difficult statistical problem: a need to classify the data by

putting the samples into clusters based on diffraction-pattern

similarity so that unusual samples can be readily identified. At

the same time, suitable visualization tools to help in the data-

classification process are required; the techniques of classification

and visualization go hand-in-hand. Interestingly, the techniques

developed for large data sets with poor-quality data also have

great value when looking at smaller data sets, and the visualiza-

tion tools developed for high-throughput studies are especially

useful when looking at phase transitions, mixtures etc.

In this chapter the methods for comparing whole patterns will

be described. The mathematics of cluster analysis will then be

explained, followed by a discussion of the associated visualization

tools. Examples using small data sets from pharmaceuticals,

inorganics and phase transitions will be given; the techniques

used can be readily scaled up for handling large, high-throughput

data sets. The same methods also work for spectroscopic data and

the use of such information with and without powder X-ray

diffraction (PXRD) data will be discussed. Finally, the use of

visualization tools in quality control is demonstrated.

3.8.2. Comparing 1D diffraction patterns

Comparing 1D diffraction patterns or spectra cannot be done by

simply using the peaks and their relative intensities for a number

of reasons:

(1) The accurate determinations of the peak positions may be

difficult, especially in cases where peak overlap occurs or

there is significant peak asymmetry.

(2) The hardware and the way in which the sample is prepared

can also affect the d-spacing (or 2� value) that is recorded for
the peak. Shoulders to main peaks and broad peaks can also

be problematic.

(3) There is a subjective element to deciding how many peaks

there are in the pattern, especially for weak peaks and noisy

data.

(4) Weak peaks may be discarded. This can affect the quantita-

tive analysis of mixtures if one component diffracts weakly or

is present only in small amounts.

(5) Differences in sample preparation and instrumentation can

lead to significant differences in the powder-diffraction

patterns of near-identical samples.

(6) Preferred orientation may be present: this is a very difficult

and common problem.

(7) The reduction of the pattern to point functions can also make

it difficult to design effective algorithms.

In order to use the information contained within the full

profile, algorithms are required that utilize each measured data

point in the analysis. We use two correlation coefficients for the

purpose of comparing PXRD patterns: the Pearson and the

Spearman coefficients.

3.8.2.1. Spearman’s rank order coefficient

Consider two diffraction patterns, i and j, each with nmeasured

points n((x1, y1), . . . , (xn, yn)). These are transformed to ranks

R(xk) and R(yk). The Spearman test (Spearman, 1904) then gives

a correlation coefficient (Press et al., 2007),

Rij ¼

Xn

k¼1

RðxkÞRðykÞ � n
nþ 1

2

� �2

Xn

k¼1

RðxkÞ2 � n
nþ 1

2

� �2
 !1=2 Xn

k¼1

RðykÞ2 � n
nþ 1

2

� �2
 !1=2

;

ð3:8:1Þ
where �1 � Rij � 1.

3.8.2.2. Pearson’s r coefficient

Pearson’s r is a parametric linear correlation coefficient widely

used in crystallography. It has a similar form to Spearman’s test,

except that the data values themselves, and not their ranks, are

used:

rij ¼
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n

k¼1
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� �1=2 ; ð3:8:2Þ

where x and y are the means of intensities taken over the full

diffraction pattern. Again, r can lie between �1.0 and +1.0.

Fig. 3.8.1 shows the use of the Pearson and Spearman corre-

lation coefficients (Barr et al., 2004a). In Fig. 3.8.1(a) r = 0.93 and

R = 0.68. The high parametric coefficient arises from the perfect

match of the two biggest peaks, but the much lower Spearman

coefficient acts as a warning that there are unmatched regions in

the two patterns. In Fig. 3.8.1(b) the situation is reversed: r = 0.79,

whereas R = 0.90, and it can be seen that there is a strong measure

of association with the two patterns, although there are some

discrepancies in the region 15–35�. In Fig. 3.8.1(c) r = 0.66 and

R = 0.22; in this case the Spearman test is again warning of

missing match regions. Thus, the use of the two coefficients

acts as a valuable balance of their respective properties when

processing complete patterns. The Spearman coefficient is also

robust in the statistical sense and useful in the case of preferred

orientation.

3.8.2.3. Combining the correlation coefficients

Correlation coefficients are not additive, so it is invalid to

average them directly; they need to be transformed into the

Fisher Z value to give
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�ij ¼ tanh tanh�1Rij þ tanh�1rij
� �

=2
� �

: ð3:8:3Þ

3.8.2.4. Full-profile qualitative pattern matching

Before performing pattern matching, some data pre-processing

may be necessary. In order not to produce artefacts, this should

be minimized. Typical pre-processing activities are:

(1) The data are normalized such that the maximum peak

intensity is 1.0.

(2) The patterns need to be interpolated if necessary to have

common increments in 2�. High-order polynomials using

Neville’s algorithm can be used for this (Press et al., 2007).

(3) If backgrounds are large they should be removed. High-

throughput data are often very noisy because of low counting

times and the sample itself. If this is the case, smoothing of the

data can be carried out. The SURE (Stein’s Unbiased Risk

Estimate) thresholding procedure (Donoho & Johnstone,

1995; Ogden, 1997) employing wavelets is ideal for this task

since it does not introduce potentially damaging artefacts, for

example ringing around peaks (Barr et al., 2004a; Smrčok et

al., 1999).

After pre-processing, which needs to be carried out in an

identical way for each sample, the following steps are carried out:

(1) The intersecting 2� range of the two data sets is calculated,

and each of the pattern correlation coefficients is calculated

using only this region.

(2) A minimum intensity is set, below which profile data are set

to zero. This reduces the contribution of background noise to

the matching process without reducing the discriminating

power of the method. We usually set this to 0.1Imax as a

default, where Imax is the maximum measured intensity.

(3) The Pearson correlation coefficient is calculated.

(4) The Spearman R is computed in the same way.

(5) An overall � value is calculated using (3.8.3).

(6) A shift in 2� values between patterns is often observed,

arising from equipment settings and data-collection proto-

cols. Three possible simple corrections are

� 2�ð Þ ¼ a0 þ a1 cos �; ð3:8:4Þ
which corrects for the zero-point error via the a0 term and, via

the a1 cos � term, for varying sample heights in reflection

mode, or

� 2�ð Þ ¼ a0 þ a1 sin �; ð3:8:5Þ
which corrects for transparency errors, for example, and

� 2�ð Þ ¼ a0 þ a1 sin 2�; ð3:8:6Þ
which provides transparency coupled with thick specimen

error corrections, where a0 and a1 are constants that can be

determined by shifting patterns to maximize their overlap as

measured by �. It is difficult to obtain suitable expressions for

the derivatives @a0=@�ij and @a1=@�ij for use in the optimiza-

tion, so we use the downhill simplex method (Nelder &

Mead, 1965), which does not require their calculation.

3.8.2.5. Generation of the correlation and distance matrices

Using equation (3.8.3), a correlation matrix is generated in

which a set of n patterns is matched with every other to give a

symmetric (n � n) correlation matrix q with unit diagonal. The

matrix q can be converted to a Euclidean distance matrix, d, of

the same dimensions via

d ¼ 0:5 1:0� qð Þ ð3:8:7Þ

or a distance-squared matrix,

D ¼ 0:25 1� qð Þ2 ð3:8:8Þ

for each entry i, j in d, 0:0 � dij � 1:0. A correlation coefficient of

1.0 translates to a distance of 0.0, a coefficient of �1.0 to 1.0, and

zero to 0.5. There are other methods of generating a distance

matrix from q (see, for example, Gordon, 1981, 1999), but we

have found this to be both simple and as effective as any other.

For other purposes a dissimilarity matrix s is also needed,

whose elements are defined via

sij ¼ 1� dij=d
max; ð3:8:9Þ

where dmax is the maximum distance in matrix d. A dissimilarity

matrix, d, is also generated with elements

�ij ¼ dij=d
max
ij : ð3:8:10Þ

Figure 3.8.1
The use of the Pearson (r) and Spearman (R) correlation coefficients to
quantitatively match powder patterns: (a) r = 0.93, R = 0.68; (b) r = 0.79,
R = 0.90; (c) r = 0.66, R = 0.22.
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3.8. DATA CLUSTERING AND VISUALIZATION

In some cases it can be advantageous to use I1/2 in the distance-

matrix generation; this can enhance the sensitivity of the clus-

tering to weak peaks (Butler et al., 2019).

3.8.3. Cluster analysis

Cluster analysis uses d (or s, or d) to partition the patterns into

groups based on the similarity of their diffraction profiles.

Associated with cluster are a number of important ancillary

techniques all of which will be discussed here. A flowchart of

these methods is shown in Fig. 3.8.4.

3.8.3.1. Dendrograms

Using d and s, agglomerative, hierarchical cluster analysis is

now carried out, in which the patterns are put into clusters as

defined by their distances from each other. [Gordon (1981, 1999)

and Everitt et al. (2001) provide excellent and detailed intro-

ductions to the subject. Note that the two editions of Gordon’s

monograph are quite distinct and complementary.] The method

begins with a situation in which each pattern is considered to be

in a separate cluster. It then searches for the two patterns with the

shortest distance between then, and joins them into a single

cluster. This continues in a stepwise fashion until all the patterns

form a single cluster. When two clusters (Ci and Cj) are merged,

there is the problem of defining the distance between the newly

formed cluster Ci [ Cj and any other cluster Ck. There are a

number of different ways of doing this, and each one gives rise

to a different clustering of the patterns, although often the

difference can be quite small. A general algorithm has been

proposed by Lance & Williams (1967), and is summarized in a

simplified form by Gordon (1981). The distance from the new

cluster formed by merging Ci and Cj to any other cluster Ck is

given by

dðCi [ Cj; CkÞ ¼ �idðCi;CkÞ þ �jdðCj;CkÞ þ �dðCi;CjÞ
þ � dðCi;CkÞ � dðCj;CkÞ

		 		: ð3:8:11Þ
There are many possible clustering methods. Table 3.8.1 defines

six commonly used clustering methods, defined in terms of the

parameters �, � and �. All these methods can be used with

powder data; in general, the group-average-link or single-link

formalism is the most effective, although differences between the

methods are often slight.

The results of cluster analysis are usually displayed as a

dendrogram, a typical example of which is shown in Fig. 3.8.6(a),

where a set of 13 powder patterns is analysed using the centroid

method. Each pattern begins at the bottom of the plot as a

separate cluster, and these amalgamate in stepwise fashion linked

by horizontal tie bars. The height of the tie bar represents a

similarity measure as measured by the relevant distance. As an

indication of the differences that can be expected in the various

algorithms used for dendrogram generation, Fig. 3.8.6(e) shows

the same data analysed using the single-link method: the resulting

clustering is slightly different: the similarity measures are larger,

and, in consequence, the tie bars are higher on the graph. [For

further examples see Barr et al. (2004b,c) and Barr, Dong,

Gilmore & Faber (2004).]

3.8.3.2. Estimating the number of clusters

An estimate of the number of clusters present in the data set is

needed. In terms of the dendrogram, this is equivalent to ‘cutting

the dendrogram’ i.e. the placement of a horizontal line across it

such that all the clusters as defined by tie lines above this line

remain independent and unlinked. The estimation of the number

of clusters is an unsolved problem in classification methods. It is

easy to see why: the problem depends on how similar the patterns

need to be in order to be classed as the same, and how much

variability is allowed within a cluster. We use two approaches:

(a) eigenvalue analysis of matrices q and A, and (b) those based

on cluster analysis.

Eigenvalue analysis is a well used technique: the eigenvalues of

the relevant matrix are sorted in descending order and when a

fixed percentage (typically 95%) of the data variability has been

accounted for, the number of eigenvalues is selected. This is

shown graphically via a scree plot, an example of which is shown

in Fig. 3.8.2.

Table 3.8.1
Six commonly used clustering methods

For each method, the coefficients �i, � and � in equation (3.8.11) are given.

Method �i � �

Single link 1
2 0 �1

2

Complete link 1
2 0 1

2

Average link ni/(ni + nj) 0 0

Weighted-average link 1
2 0 0

Centroid ni/(ni + nj) �ninj/(ni + nj)
2 0

Sum of squares (ni + nk)/(ni + nj + nk) �nk/(ni + nj + nk) 0

Figure 3.8.2
Four different methods of estimating the number of clusters present in a
set of 23 powder patterns for the drug doxazosin. A total of five
polymorphs are present, as well as two mixtures of these polymorphs.
(a) A scree plot from the eigenvalue analysis of the correlation matrix;
(b) the use of the C test (the coefficients have been multiplied by 100.0),
which gives an estimate of five clusters using its local maximum. The �
test estimates that there are seven clusters and the CH test has a local
maximum at seven clusters. Numerical details are given in Table 3.8.2.
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