International Tables for Crystallography


Diffuse scattering in electron diffraction
J. M. Cowley and J. K. Gjønnes. International Tables for Crystallography (2010). Vol. B, ch. 4.3, pp. 540-546  [ doi:10.1107/97809553602060000775 ]

Abstract

Diffuse scattering in electron diffraction arises from inelastic scattering due to electronic excitations, from thermal diffuse scattering and from scattering from crystal defects or disorder. Thermal diffuse scattering and scattering from defects or disorder may be treated using the kinematical approximation. The most prominent contribution to the diffuse background in electron diffraction, however, is the inelastic scattering at low angles. This scattering can only be described using the kinematical approximation if the crystal is very thin and composed of light elements. For other specimens, Bragg scattering and multiple diffuse scattering have to be taken into account using a dynamical scattering model. Multislice calculations for diffraction and imaging, and the qualitative interpretation of the diffuse scattering of electrons, are also discussed.


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley InterScience.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The series consists of eight volumes and comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.