modify your search
 Results for DC.creator="A." AND DC.creator="M." AND DC.creator="Glazer" in section 1.6.6 of volume D
Example of LiNbO3
Glazer, A. M. and Cox, K. G.  International Tables for Crystallography (2013). Vol. D, Section 1.6.6.2, pp. 175-176 [ doi:10.1107/97809553602060000905 ]
... by an applied electric field, it is instructive to take a particular example and work out the change in refractive index for a given electric field. LiNbO3 is the most widely used electro-optic material in industry and so this forms a useful example for calculation purposes. This material crystallizes in ...

Primary and secondary effects
Glazer, A. M. and Cox, K. G.  International Tables for Crystallography (2013). Vol. D, Section 1.6.6.1, p. 175 [ doi:10.1107/97809553602060000905 ]
... the refractive index, the applied electric field may also cause a strain in the crystal via the converse piezoelectric effect, and this can then change the refractive index, as a secondary effect, through the elasto-optic effect. Both these effects ...

Linear electro-optic effect
Glazer, A. M. and Cox, K. G.  International Tables for Crystallography (2013). Vol. D, Section 1.6.6, pp. 175-176 [ doi:10.1107/97809553602060000905 ]
... of the change in dielectric impermeability caused by imposition of a static electric field on the crystal. Thus one may write ... see Table 1.6.6.1). Like the piezoelectric tensor, there is a maximum of 18 independent coefficients (triclinic case) (see Section 1.1.4.10.3 ... notation) TriclinicMonoclinicOrthorhombic Point group 1 Point group 2 () Point group m () Point group 222 Point group 2 () Point group m () ...

powered by swish-e
























































to end of page
to top of page