modify your search
 Results for DC.creator="B." AND DC.creator="Souvignier" in section 1.5.4 of volume A
Synoptic table of the space groups
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.3, pp. 95-106 [ doi:10.1107/97809553602060000923 ]
... the first line with lattice translations. For example, for A-, B-, C- and I-centred space groups, the entries of the ... Mauguin symbols for various settings and cell choices abcUnique axis b abcUnique axis c abcUnique axis a 3 P2 P121 P121 ... monoclinic system, three choices of unique axis can occur, namely b, c and a. In each case, two permutations of ...

Synoptic table of the plane groups
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.2, p. 95 [ doi:10.1107/97809553602060000923 ]
Synoptic table of the plane groups 1.5.4.2. Synoptic table of the plane groups The possible plane-group symbols are listed in Table 1.5.4.3. Two cases of multiple cells are included in addition to the standard cells, namely the c centring in the square system and the h centring in the hexagonal ...

Examples with additional types of symmetry elements
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1.3, pp. 92-95 [ doi:10.1107/97809553602060000923 ]
... 0 P622 (177) m x, 2x, z 0, 1, 0 b P3m1 (156) 1, 1, 0 p3m1 (14) R3m (160) c ... operationsRepresentative space groups (numbers) F SymbolLocationSymbolLocationSymbolLocationSymbolLocationSymbolLocationSymbol m 0, y, z b n 0, y, z c n b, n, c Cmmm, Ammm, Bmmm (65) c n b ...

Synoptic tables of plane and space groups
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4, pp. 91-106 [ doi:10.1107/97809553602060000923 ]
... 0 P622 (177) m x, 2x, z 0, 1, 0 b P3m1 (156) 1, 1, 0 p3m1 (14) R3m (160) c ... operationsRepresentative space groups (numbers) F SymbolLocationSymbolLocationSymbolLocationSymbolLocationSymbolLocationSymbol m 0, y, z b n 0, y, z c n b, n, c Cmmm, Ammm, Bmmm (65) c n b ...

Determining the type of a symmetry operation
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1.1, pp. 91-92 [ doi:10.1107/97809553602060000923 ]
Determining the type of a symmetry operation 1.5.4.1.1. Determining the type of a symmetry operation In this section, a procedure for determining the types of symmetry operations and the corresponding symmetry elements is explained. It is a development of the method of geometrical interpretation discussed in Section 1.2.2.4 . The procedure ...

Additional symmetry operations and symmetry elements
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1, pp. 91-95 [ doi:10.1107/97809553602060000923 ]
... 0 P622 (177) m x, 2x, z 0, 1, 0 b P3m1 (156) 1, 1, 0 p3m1 (14) R3m (160) c ... operationsRepresentative space groups (numbers) F SymbolLocationSymbolLocationSymbolLocationSymbolLocationSymbolLocationSymbol m 0, y, z b n 0, y, z c n b, n, c Cmmm, Ammm, Bmmm (65) c n b ...

Cosets without additional types of symmetry elements
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1.2, p. 92 [ doi:10.1107/97809553602060000923 ]
Cosets without additional types of symmetry elements 1.5.4.1.2. Cosets without additional types of symmetry elements In cases where the linear part of a symmetry operation fixes only the origin, all elements in the coset are of the same type. This is due to the fact that the translation part is decomposed ...

powered by swish-e
























































to end of page
to top of page