modify your search
 Results for DC.creator="D." AND DC.creator="B." AND DC.creator="Litvin" in section 1.2.1 of volume E
Conventional coordinate systems
Kopskyacute, V. and Litvin, D. B.  International Tables for Crystallography (2010). Vol. E, Section 1.2.1.2.1, pp. 5-7 [ doi:10.1107/97809553602060000783 ]
... three-dimensional layer groups and rod groups are labelled a, b and c. The basis vectors for the two-dimensional frieze groups are labelled a and b. Unlike space groups, not all basis vectors of the crystallographic ... setting will refer to the assignment of the labels a, b and c (and the corresponding directions [100], [010] and [ ...

Other classifications
Kopskyacute, V. and Litvin, D. B.  International Tables for Crystallography (2010). Vol. E, Section 1.2.1.2, pp. 5-7 [ doi:10.1107/97809553602060000783 ]
... be determinedBravais lattice Oblique m Triclinic 1, 2 None a, b, [gamma] mp Monoclinic 2, m, 2/m 5 [alpha] = [beta] = 90 Rectangular o 11 [beta] = [gamma] = 90 a, b op Orthorhombic 222, 2mm, mmm 30 [alpha] = [beta] = [gamma] = 90 oc Square t Tetragonal 4, , 4/m 16 a = b a tp 422, 4mm, 2m, 4/mmm [alpha] = [beta] = [ ...

Subperiodic group types
Kopskyacute, V. and Litvin, D. B.  International Tables for Crystallography (2010). Vol. E, Section 1.2.1.1, p. 5 [ doi:10.1107/97809553602060000783 ]
Subperiodic group types 1.2.1.1. Subperiodic group types The subperiodic groups are classified into affine subperiodic group types, i.e. affine equivalence classes of subperiodic groups. There are 80 affine layer-group types and seven affine frieze-group types. There are 67 crystallographic and an infinity of noncrystallographic (Opechowski, 1986) affine rod-group ...

Classification of subperiodic groups
Kopskyacute, V. and Litvin, D. B.  International Tables for Crystallography (2010). Vol. E, Section 1.2.1, pp. 5-7 [ doi:10.1107/97809553602060000783 ]
... be determinedBravais lattice Oblique m Triclinic 1, 2 None a, b, [gamma] mp Monoclinic 2, m, 2/m 5 [alpha] = [beta] = 90 Rectangular o 11 [beta] = [gamma] = 90 a, b op Orthorhombic 222, 2mm, mmm 30 [alpha] = [beta] = [gamma] = 90 oc Square t Tetragonal 4, , 4/m 16 a = b a tp 422, 4mm, 2m, 4/mmm [alpha] = [beta] = [ ...

powered by swish-e
























































to end of page
to top of page