modify your search
 Results for DC.creator="G." AND DC.creator="Chapuis" in section 1.5.4 of volume A
Synoptic table of the space groups
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.3, pp. 95-106 [ doi:10.1107/97809553602060000923 ]
... 225 226 227 228 229 230 Note: The glide planes g, and have the glide components , and . †For the five ... alternate, as do the reflection m and the glide reflection g [g is the name for a glide reflection with a ...

Synoptic table of the plane groups
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.2, p. 95 [ doi:10.1107/97809553602060000923 ]
... centring points at 0, 0; and . The glide lines g directly listed under the mirror lines m in the extended ...

Examples with additional types of symmetry elements
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1.3, pp. 92-95 [ doi:10.1107/97809553602060000923 ]
... 155) P432 (207) m x, x, z 1, 0, 0 g p4mm (11) 0, 1, 0 P4mm (99) R3m (160) (215 ... m x, x, z x, x, z x, x, z g, g, g I4mm (107), (216) c n, g, g (219) ( ...

Synoptic tables of plane and space groups
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4, pp. 91-106 [ doi:10.1107/97809553602060000923 ]
... 155) P432 (207) m x, x, z 1, 0, 0 g p4mm (11) 0, 1, 0 P4mm (99) R3m (160) (215 ... m x, x, z x, x, z x, x, z g, g, g I4mm (107), (216) c n, g, g (219) ( ...

Determining the type of a symmetry operation
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1.1, pp. 91-92 [ doi:10.1107/97809553602060000923 ]
Determining the type of a symmetry operation 1.5.4.1.1. Determining the type of a symmetry operation In this section, a procedure for determining the types of symmetry operations and the corresponding symmetry elements is explained. It is a development of the method of geometrical interpretation discussed in Section 1.2.2.4 . The procedure ...

Additional symmetry operations and symmetry elements
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1, pp. 91-95 [ doi:10.1107/97809553602060000923 ]
... 155) P432 (207) m x, x, z 1, 0, 0 g p4mm (11) 0, 1, 0 P4mm (99) R3m (160) (215 ... m x, x, z x, x, z x, x, z g, g, g I4mm (107), (216) c n, g, g (219) ( ...

Cosets without additional types of symmetry elements
Souvignier, B., Chapuis, G. and Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.5.4.1.2, p. 92 [ doi:10.1107/97809553602060000923 ]
Cosets without additional types of symmetry elements 1.5.4.1.2. Cosets without additional types of symmetry elements In cases where the linear part of a symmetry operation fixes only the origin, all elements in the coset are of the same type. This is due to the fact that the translation part is decomposed ...

powered by swish-e
























































to end of page
to top of page