modify your search
 Results for DC.creator="H." AND DC.creator="Burzlaff" in section 3.1.1 of volume A
Remarks
Burzlaff, H. and Zimmermann, H.  International Tables for Crystallography (2016). Vol. A, Section 3.1.1.5, pp. 699-700 [ doi:10.1107/97809553602060000929 ]
... e.g. a hexagonal cell centred at and which is called H. In this case, rule (iiia) above is violated as vectors ...

Special bases for lattices
Burzlaff, H. and Zimmermann, H.  International Tables for Crystallography (2016). Vol. A, Section 3.1.1.4, pp. 698-699 [ doi:10.1107/97809553602060000929 ]
... Two dimensions. Lattice point group22mm4mm6mm Crystal family† m o t h monoclinic (oblique) orthorhombic (rectangular) tetragonal (square) hexagonal (b) Three dimensions. Lattice point group Crystal family† a m o t h c anorthic (triclinic) monoclinic orthorhombic tetragonal hexagonal cubic †The symbols ... geometrischen Kristallographie. Z. Kristallogr. 84, 109-149. Donnay, J. D. H. (1943). Rules for the conventional orientation of crystals. ...

Topological properties of lattices
Burzlaff, H. and Zimmermann, H.  International Tables for Crystallography (2016). Vol. A, Section 3.1.1.3, p. 698 [ doi:10.1107/97809553602060000929 ]
... a single finite polyhedron, namely the domain of influence (cf. Burzlaff & Zimmermann, 1977). References Burzlaff, H. & Zimmermann, H. (1977). Symmetrielehre. Part I of the ...

Lattices
Burzlaff, H. and Zimmermann, H.  International Tables for Crystallography (2016). Vol. A, Section 3.1.1.2, p. 698 [ doi:10.1107/97809553602060000929 ]
Lattices 3.1.1.2. Lattices A three-dimensional lattice can be visualized best as an infinite periodic array of points, which are the termini of the vectors The parallelepiped determined by the basis vectors a, b, c is called a (primitive) unit cell of the lattice (cf. Section 1.3.2.3 ), a, b and c ...

Description and transformation of bases
Burzlaff, H. and Zimmermann, H.  International Tables for Crystallography (2016). Vol. A, Section 3.1.1.1, p. 698 [ doi:10.1107/97809553602060000929 ]
Description and transformation of bases 3.1.1.1. Description and transformation of bases In three dimensions, a coordinate system is defined by an origin and a basis consisting of three non-coplanar vectors. The lengths a, b, c of the basis vectors a, b, c and the intervector angles , , are called the metric ...

Bases and lattices
Burzlaff, H. and Zimmermann, H.  International Tables for Crystallography (2016). Vol. A, Section 3.1.1, pp. 698-700 [ doi:10.1107/97809553602060000929 ]
... a single finite polyhedron, namely the domain of influence (cf. Burzlaff & Zimmermann, 1977). 3.1.1.4. Special bases for lattices | | Different procedures ... Two dimensions. Lattice point group22mm4mm6mm Crystal family† m o t h monoclinic (oblique) orthorhombic (rectangular) tetragonal (square) hexagonal (b) Three dimensions. Lattice point group Crystal family† a m o t h c anorthic (triclinic) monoclinic orthorhombic tetragonal hexagonal cubic †The ...

powered by swish-e
























































to end of page
to top of page