modify your search
 Results for DC.creator="H." AND DC.creator="Klapper" in section 3.3.10 of volume D   page 1 of 4 pages.
Twin boundaries
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10, pp. 450-469 [ doi:10.1107/97809553602060000917 ]
... Other boundaries of these growth twins have not been observed (Klapper, 1973). (4) KLiSO4 (polar point group 6). Among ... due to the twin law which preserves the polar direction (Klapper et al., 1987). These examples demonstrate that in many ... tail character and frequently coincide with the growth-sector boundaries (Klapper et al., 1987). 3.3.10.3.2. Non-merohedral twins | | Charged ...

Twinning dislocations
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.8, pp. 467-468 [ doi:10.1107/97809553602060000917 ]
Twinning dislocations 3.3.10.8. Twinning dislocations In contrast to (low-angle) grain boundaries, twin boundaries do not require the existence of boundary dislocations as necessary constituents. Nevertheless, a special kind of dislocation, called `twinning dislocation', has been introduced in materials science for twin boundaries of deformation twins, i.e. for twins with a ...

Twin textures in polycrystalline aggregates
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.7.5, p. 467 [ doi:10.1107/97809553602060000917 ]
Twin textures in polycrystalline aggregates 3.3.10.7.5. Twin textures in polycrystalline aggregates So far, twin textures have been treated independently of their occurrence in `single crystals' or in polycrystalline aggregates. In the present section, the specific situation in polycrystalline materials such as ceramics, metals and rocks is discussed. This treatment is concerned ...

Tweed microstructures
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.7.4, pp. 466-467 [ doi:10.1107/97809553602060000917 ]
... Phase Transit. 55, 169-179. Blackburn, J. & Salje, E. K. H. (1999). Time evolution of twin domains in cordierite: a ... and 12.4. Cambridge University Press. Putnis, A. & Salje, E. K. H. (1994). Tweed microstructures: experimental observations and some theoretical models. ... Phase Transit. 48, 85-105. Putnis, A., Salje, E. K. H., Redfern, S., Fyfe, C. & Strobl, H. (1987). Structural ...

Fitting problems of ferroelastic twins
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.7.3, pp. 464-466 [ doi:10.1107/97809553602060000917 ]
... Crystals of Rochelle Salt. PhD thesis, Moscow. (In Russian.) Jennissen, H.-D. (1990). Phasenumwandlungen und Defektstrukturen in Kristallen mit tetraedrischen ... 41-67. Palmer, D. C., Putnis, A. & Salje, E. K. H. (1988). Twinning in tetragonal leucite. Phys. Chem. Mineral. 16 ... . Z. Physik B, 69, 21-27. Salje, E. K. H., Buckley, A., Van Tendeloo, G., Ishibashi, Y. & Nord, G. ...

Non-merohedral (ferroelastic) twins
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.7.2, p. 464 [ doi:10.1107/97809553602060000917 ]
Non-merohedral (ferroelastic) twins 3.3.10.7.2. Non-merohedral (ferroelastic) twins Here, the lattices of the twin domains are not completely parallel (`twins with inclined axes'). As a result, severe space problems may arise during domain formation. Several different cases have to be considered: (1) Only one twin law, i.e. only two ...

Merohedral (non-ferroelastic) twins (see Sections 3.3.9 and 3.3.10.2.3)
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.7.1, p. 464 [ doi:10.1107/97809553602060000917 ]
Merohedral (non-ferroelastic) twins (see Sections 3.3.9 and 3.3.10.2.3) 3.3.10.7.1. Merohedral (non-ferroelastic) twins (see Sections 3.3.9 and 3.3.10.2.3) In these twins, the lattices of all domains are exactly parallel (`parallel-lattice twins'). Hence, no spontaneous lattice deformations (spontaneous strain) occur and the development of the domain pattern of the ...

Twin textures
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.7, pp. 464-467 [ doi:10.1107/97809553602060000917 ]
... Phase Transit. 55, 169-179. Blackburn, J. & Salje, E. K. H. (1999). Time evolution of twin domains in cordierite: a ... and Alloys, especially chs. 8 and 20. Oxford: Pergamon. Jennissen, H.-D. (1990). Phasenumwandlungen und Defektstrukturen in Kristallen mit tetraedrischen ... 41-67. Palmer, D. C., Putnis, A. & Salje, E. K. H. (1988). Twinning in tetragonal leucite. Phys. Chem. Mineral. ...

Fivefold cyclic twins in nanocrystalline materials
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.6.6, pp. 463-464 [ doi:10.1107/97809553602060000917 ]
... bulk and of one pair of stacking faults. Courtesy of H. Hofmeister, Halle; cf. Hofmeister & Junghans (1993); Hofmeister (1998). For ... subject which is treated in the following section. References Hofmeister, H. (1998). Forty years study of fivefold twinned structures in ... Cryst. Res. Technol. 33, 3-25, especially Section 4. Hofmeister, H. & Junghans, T. (1993). Multiple twinning in the solid ...

[Sigma] = 3 bicrystal boundaries in Cu and Ag
Hahn, Th. and Klapper, H.  International Tables for Crystallography (2013). Vol. D, Section 3.3.10.6.5, p. 463 [ doi:10.1107/97809553602060000917 ]
[Sigma] = 3 bicrystal boundaries in Cu and Ag 3.3.10.6.5. [Sigma] = 3 bicrystal boundaries in Cu and Ag Differently oriented interfaces in bicrystals of Cu and Ag were elucidated by Hoffmann & Ernst (1994) and Ernst et al. (1996). They prepared bicrystals of fixed orientation relationship [corresponding to the (111) spinel ...

Page: 1 2 3 4 Next powered by swish-e
























































to end of page
to top of page