modify your search
Results for DC.creator="H." AND DC.creator="Klapper" in section 3.3.8 of volume D |
Lattice aspects of twinning
International Tables for Crystallography (2013). Vol. D, Section 3.3.8, pp. 440-446 [ doi:10.1107/97809553602060000917 ]
... will be treated extensively in Sections 3.3.9 and 3.3.11.3; cf. Klapper & Hahn (2010). (ii) Twins with ( twins). This twinning ... Sigma]7 twins are treated in Section 3.3.11.4 and in Klapper & Hahn (2012). Examples (1) Tetragonal twins with twin reflection ... gels, G., Buijnsters, J. G., Verhaegen, S. A. C., Meekes, H., Bennema, P. & Bollen, D. (1999). Morphology and growth ...
Twinning of isostructural crystals
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.6, p. 446 [ doi:10.1107/97809553602060000917 ]
... gels, G., Buijnsters, J. G., Verhaegen, S. A. C., Meekes, H., Bennema, P. & Bollen, D. (1999). Morphology and growth mechanism ... . Twinned crystals. Adv. Phys. 3, 363-445. Engel, G., Klapper, H., Krempl, P. & Mang, H. (1989). Growth twinning in ...
Twin obliquity and lattice pseudosymmetry
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.5, pp. 444-446 [ doi:10.1107/97809553602060000917 ]
... Chem. Miner. 26, 668-672. Donnay, G. & Donnay, J. D. H. (1974). Classification of triperiodic twins. Can. Mineral. 12, 422-425. Donnay, J. D. H. & Donnay, G. (1972). Crystal geometry, Section 3 (pp. 99 ...
Approximate (pseudo-)coincidences of two or more lattices
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.4, p. 444 [ doi:10.1107/97809553602060000917 ]
Approximate (pseudo-)coincidences of two or more lattices 3.3.8.4. Approximate (pseudo-)coincidences of two or more lattices In part (iv) of Section 3.3.8.2, three-dimensional lattice coincidences and twin lattices (sublattices) were considered under two restrictions: (a) the lattice coincidences (according to the twin lattice index [j]) are exact (not approximate ...
Twins with three-dimensional twin lattices (`triperiodic' twins)
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.3, pp. 442-443 [ doi:10.1107/97809553602060000917 ]
... will be treated extensively in Sections 3.3.9 and 3.3.11.3; cf. Klapper & Hahn (2010). (ii) Twins with ( twins). This twinning ... Sigma]7 twins are treated in Section 3.3.11.4 and in Klapper & Hahn (2012). Examples (1) Tetragonal twins with twin reflection ... twinning in fcc crystals. Acta Metall. 32, 1117-1138. Hofmeister, H. (1998). Forty years study of fivefold twinned structures ...
Lattice coincidences, twin lattice, twin lattice index
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.2, pp. 441-442 [ doi:10.1107/97809553602060000917 ]
... notation used in metallurgy is included. References Donnay, J. D. H. & Donnay, G. (1972). Crystal geometry, Section 3 (pp. 99 ... Strasbourg: Berger-Levrault. [Reprinted (1964). Paris: Blanchard]. Grimmer, H. (1989a). Systematic determination of coincidence orientations for all hexagonal ... in a given interval. Acta Cryst. A45, 320-325. Grimmer, H. (1989b). Coincidence orientations of grains in rhombohedral materials. ...
Basic concepts of Friedel's lattice theory
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.1, p. 441 [ doi:10.1107/97809553602060000917 ]
Basic concepts of Friedel's lattice theory 3.3.8.1. Basic concepts of Friedel's lattice theory The basis of Friedel's (1904, 1926) lattice theory of twinning is the postulate that the coincidence-site sublattice common to the two twin partners (twin lattice) suffers no deviation (strict condition) or at most a ...
Conclusions
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.7, p. 446 [ doi:10.1107/97809553602060000917 ]
Conclusions 3.3.8.7. Conclusions In conclusion, the lattice theory of twinning, presented in this section, can be summarized as follows: (i) The lattice theory represents one of the first systematic theories of twinning; it is based on a clear and well defined concept and thus has found widespread acceptance, especially for the ...
International Tables for Crystallography (2013). Vol. D, Section 3.3.8, pp. 440-446 [ doi:10.1107/97809553602060000917 ]
... will be treated extensively in Sections 3.3.9 and 3.3.11.3; cf. Klapper & Hahn (2010). (ii) Twins with ( twins). This twinning ... Sigma]7 twins are treated in Section 3.3.11.4 and in Klapper & Hahn (2012). Examples (1) Tetragonal twins with twin reflection ... gels, G., Buijnsters, J. G., Verhaegen, S. A. C., Meekes, H., Bennema, P. & Bollen, D. (1999). Morphology and growth ...
Twinning of isostructural crystals
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.6, p. 446 [ doi:10.1107/97809553602060000917 ]
... gels, G., Buijnsters, J. G., Verhaegen, S. A. C., Meekes, H., Bennema, P. & Bollen, D. (1999). Morphology and growth mechanism ... . Twinned crystals. Adv. Phys. 3, 363-445. Engel, G., Klapper, H., Krempl, P. & Mang, H. (1989). Growth twinning in ...
Twin obliquity and lattice pseudosymmetry
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.5, pp. 444-446 [ doi:10.1107/97809553602060000917 ]
... Chem. Miner. 26, 668-672. Donnay, G. & Donnay, J. D. H. (1974). Classification of triperiodic twins. Can. Mineral. 12, 422-425. Donnay, J. D. H. & Donnay, G. (1972). Crystal geometry, Section 3 (pp. 99 ...
Approximate (pseudo-)coincidences of two or more lattices
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.4, p. 444 [ doi:10.1107/97809553602060000917 ]
Approximate (pseudo-)coincidences of two or more lattices 3.3.8.4. Approximate (pseudo-)coincidences of two or more lattices In part (iv) of Section 3.3.8.2, three-dimensional lattice coincidences and twin lattices (sublattices) were considered under two restrictions: (a) the lattice coincidences (according to the twin lattice index [j]) are exact (not approximate ...
Twins with three-dimensional twin lattices (`triperiodic' twins)
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.3, pp. 442-443 [ doi:10.1107/97809553602060000917 ]
... will be treated extensively in Sections 3.3.9 and 3.3.11.3; cf. Klapper & Hahn (2010). (ii) Twins with ( twins). This twinning ... Sigma]7 twins are treated in Section 3.3.11.4 and in Klapper & Hahn (2012). Examples (1) Tetragonal twins with twin reflection ... twinning in fcc crystals. Acta Metall. 32, 1117-1138. Hofmeister, H. (1998). Forty years study of fivefold twinned structures ...
Lattice coincidences, twin lattice, twin lattice index
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.2, pp. 441-442 [ doi:10.1107/97809553602060000917 ]
... notation used in metallurgy is included. References Donnay, J. D. H. & Donnay, G. (1972). Crystal geometry, Section 3 (pp. 99 ... Strasbourg: Berger-Levrault. [Reprinted (1964). Paris: Blanchard]. Grimmer, H. (1989a). Systematic determination of coincidence orientations for all hexagonal ... in a given interval. Acta Cryst. A45, 320-325. Grimmer, H. (1989b). Coincidence orientations of grains in rhombohedral materials. ...
Basic concepts of Friedel's lattice theory
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.1, p. 441 [ doi:10.1107/97809553602060000917 ]
Basic concepts of Friedel's lattice theory 3.3.8.1. Basic concepts of Friedel's lattice theory The basis of Friedel's (1904, 1926) lattice theory of twinning is the postulate that the coincidence-site sublattice common to the two twin partners (twin lattice) suffers no deviation (strict condition) or at most a ...
Conclusions
International Tables for Crystallography (2013). Vol. D, Section 3.3.8.7, p. 446 [ doi:10.1107/97809553602060000917 ]
Conclusions 3.3.8.7. Conclusions In conclusion, the lattice theory of twinning, presented in this section, can be summarized as follows: (i) The lattice theory represents one of the first systematic theories of twinning; it is based on a clear and well defined concept and thus has found widespread acceptance, especially for the ...
powered by |