modify your search
 Results for DC.creator="H." AND DC.creator="Wondratschek" in section 1.7.1 of volume A
Supergroups
Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.7.1.4, p. 134 [ doi:10.1107/97809553602060000925 ]
Supergroups 1.7.1.4. Supergroups Sometimes a space group is known and the possible space groups , of which is a subgroup, are of interest. A space group is called a minimal supergroup of a space group if is a maximal subgroup of . Examples of minimal supergroups In Fig. 1.7.1.1, the space group ...

Isomorphic subgroups of space groups
Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.7.1.3, p. 134 [ doi:10.1107/97809553602060000925 ]
Isomorphic subgroups of space groups 1.7.1.3. Isomorphic subgroups of space groups The existence of isomorphic subgroups is of special interest. There can be no proper isomorphic subgroups of finite groups because the difference of the orders does not allow isomorphism. The point group of a space group is finite and its ...

Klassengleiche (or k-) subgroups of space groups
Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.7.1.2, p. 134 [ doi:10.1107/97809553602060000925 ]
Klassengleiche (or k-) subgroups of space groups 1.7.1.2. Klassengleiche (or k-) subgroups of space groups Every space group has an infinite number of maximal k-subgroups. For dimensions 1, 2 and 3, however, it can be shown that the number of maximal k-subgroups is finite if subgroups belonging to the ...

Translationengleiche (or t-) subgroups of space groups
Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.7.1.1, p. 133 [ doi:10.1107/97809553602060000925 ]
... edited by C. Hermann. Berlin: Borntraeger. Ascher, E., Gramlich, V. & Wondratschek, H. (1969). Korrekturen zu den Angaben `Untergruppen' in den Raumgruppen ...

Subgroups and supergroups of space groups
Wondratschek, H.  International Tables for Crystallography (2016). Vol. A, Section 1.7.1, pp. 132-134 [ doi:10.1107/97809553602060000925 ]
... . Vol. A1, Symmetry Relations between Space Groups, edited by H. Wondratschek & U. Müller, 2nd ed. Chichester: John Wiley & Sons. [Abbreviated ... edited by C. Hermann. Berlin: Borntraeger. Ascher, E., Gramlich, V. & Wondratschek, H. (1969). Korrekturen zu den Angaben `Untergruppen' in ...

powered by swish-e
























































to end of page
to top of page