modify your search
 Results for DC.creator="T." AND DC.creator="M." AND DC.creator="Sabine" in section 6.4.13 of volume C
The absorbing crystal
Sabine, T. M.  International Tables for Crystallography (2006). Vol. C, Section 6.4.13.3, p. 612 [ doi:10.1107/97809553602060000603 ]
... he obtained is IB = 8/3[1 - 2|g|], while Sabine & Blair (1992) found IB = 8/3[1 - 2.36|g|]. References Sabine, T. M. & Blair, D. G. (1992). The Ewald and ...

Non-absorbing crystal, strong secondary extinction
Sabine, T. M.  International Tables for Crystallography (2006). Vol. C, Section 6.4.13.2, p. 612 [ doi:10.1107/97809553602060000603 ]
Non-absorbing crystal, strong secondary extinction 6.4.13.2. Non-absorbing crystal, strong secondary extinction For this condition, the limiting values of the integrated intensity are , and In this limit, which was also noted by Bacon & Lowde (1948) and by Hamilton (1957), the intensity is proportional only to the mosaic spread and to ...

Non-absorbing crystal, strong primary extinction
Sabine, T. M.  International Tables for Crystallography (2006). Vol. C, Section 6.4.13.1, p. 612 [ doi:10.1107/97809553602060000603 ]
Non-absorbing crystal, strong primary extinction 6.4.13.1. Non-absorbing crystal, strong primary extinction (a) Laue case The limiting value of is . Hence, The dynamical theory has a numerical constant of 1/2 instead of 4/5. (b) Bragg case The limiting value of is . Hence, This is in exact ...

Asymptotic behaviour of the integrated intensity
Sabine, T. M.  International Tables for Crystallography (2006). Vol. C, Section 6.4.13, p. 612 [ doi:10.1107/97809553602060000603 ]
... he obtained is IB = 8/3[1 - 2|g|], while Sabine & Blair (1992) found IB = 8/3[1 - 2.36|g|]. ... and setting on secondary extinction. Acta Cryst. 10, 629-634. Sabine, T. M. & Blair, D. G. (1992). The Ewald and ...

powered by swish-e
























































to end of page
to top of page