modify your search
 Results for DC.creator="H." AND DC.creator="Wondratschek"   page 2 of 6 pages.
Space groups and their descriptions
Souvignier, B., Wondratschek, H., Aroyo, M.I., Chapuis, G. and Glazer, A.M.  International Tables for Crystallography (2015). Vol. A, ch. 1.4, pp. 42-73 [ doi:10.1107/97809553602060000922 ]
... groups and their symmetry properties. 1.4.1. Symbols of space groups H. Wondratschek e 1.4.1.1. Introduction | | Space groups describe the symmetries of crystal ... e) D6h = 6/m2/m2/m, (f) C3v = 3m, (g) , (h) T = 23. [The cubic frame in part (h) has ...

Symmetry elements
Wondratschek, H. and Aroyo, M.I.  International Tables for Crystallography (2016). Vol. A, Section 1.2.3, pp. 19-21 [ doi:10.1107/97809553602060000920 ]
... N. F. M. Henry & K. Lonsdale. Birmingham: Kynoch Press.GoogleScholar Flack, H. D., Wondratschek, H., Hahn, Th. & Abrahams, S. C. (2000). Symmetry elements ...

Determination of matrix-column pairs of symmetry operations
Wondratschek, H. and Aroyo, M.I.  International Tables for Crystallography (2016). Vol. A, Section 1.2.2.5, pp. 18-19 [ doi:10.1107/97809553602060000920 ]
Determination of matrix-column pairs of symmetry operations 1.2.2.5. Determination of matrix-column pairs of symmetry operations The specification of the symmetry operations by their types, screw or glide components and locations is sufficient to determine the corresponding matrix-column pairs (W, w). The general idea is to determine the ...
     [more results from section 1.2.2 in volume A]

Crystallographic symmetry operations
Wondratschek, H. and Aroyo, M.I.  International Tables for Crystallography (2016). Vol. A, Section 1.2.1, pp. 12-13 [ doi:10.1107/97809553602060000920 ]
Crystallographic symmetry operations 1.2.1. Crystallographic symmetry operations Geometric mappings have the property that for each point P of the space, and thus of the object, there is a uniquely determined point , the image point. If also for each image point there is a uniquely determined preimage or original point P, then ...

Historical introduction
Aroyo, M. I., Müller, U. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, ch. 1.1, pp. 2-6 [ doi:10.1107/97809553602060000790 ]
... the maximal subgroups of all space groups by Neubüser & Wondratschek. However, for another 18 years this material was only distributed ... The kind of derivation of the space-group types by H. Heesch (1930) also gives access to translationengleiche subgroups. In IT ... a chain of maximal subgroups. The derivation by Neubüser & Wondratschek started in 1965 with the translationengleiche subgroups of the ...

Graphs of the klassengleiche subgroups of hexagonal space groups
Gramlich, V. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 2.5.4, p. 461 [ doi:10.1107/97809553602060000801 ]
Graphs of the klassengleiche subgroups of hexagonal space groups 2.5.4. Graphs of the klassengleiche subgroups of hexagonal space groups For an explanation of these graphs, see Section 2.1.8.3 . Figure 2.5.4.1 | | Graph of the klassengleiche subgroups of the space groups of crystal class 6. Figure 2.5.4.2 | | Graph of the klassengleiche subgroups ...

Graphs of the klassengleiche subgroups of trigonal space groups
Gramlich, V. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 2.5.3, p. 460 [ doi:10.1107/97809553602060000801 ]
Graphs of the klassengleiche subgroups of trigonal space groups 2.5.3. Graphs of the klassengleiche subgroups of trigonal space groups For an explanation of these graphs, see Section 2.1.8.3 . Figure 2.5.3.1 | | Graph of the klassengleiche subgroups of the space groups of crystal class 3. Figure 2.5.3.2 | | Graph of the klassengleiche subgroups ...

Graphs of the klassengleiche subgroups of tetragonal space groups
Gramlich, V. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 2.5.2, pp. 457-459 [ doi:10.1107/97809553602060000801 ]
Graphs of the klassengleiche subgroups of tetragonal space groups 2.5.2. Graphs of the klassengleiche subgroups of tetragonal space groups For an explanation of these graphs, see Section 2.1.8.3 . Figure 2.5.2.1 | | Graph of the klassengleiche subgroups of the space groups of crystal class 4. Figure 2.5.2.3 | | Graph of the klassengleiche subgroups ...

Graphs of the klassengleiche subgroups of monoclinic and orthorhombic space groups
Gramlich, V. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, Section 2.5.1, pp. 454-456 [ doi:10.1107/97809553602060000801 ]
Graphs of the klassengleiche subgroups of monoclinic and orthorhombic space groups 2.5.1. Graphs of the klassengleiche subgroups of monoclinic and orthorhombic space groups For an explanation of these graphs, see Section 2.1.8.3 . Figure 2.5.1.1 | | Graph of the klassengleiche subgroups of the space groups of crystal class 2. Figure 2.5.1.2 | | Graph ...

Graphs for klassengleiche subgroups
Gramlich, V. and Wondratschek, H.  International Tables for Crystallography (2011). Vol. A1, ch. 2.5, pp. 453-464 [ doi:10.1107/97809553602060000801 ]
Chapter 2.5. Graphs for klassengleiche subgroups This chapter presents 29 contracted graphs for the maximal klassengleiche subgroups of the space groups of the 32 crystal classes. The graphs for crystal classes 1, and are not included, because in these classes there is only one space-group type and their diagrams would ...

Page: Previous 1 2 3 4 5 6 Next powered by swish-e
























































to end of page
to top of page