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1. INTRODUCTION TO SPACE-GROUP SYMMETRY

Examples

(i) The lattice L spanned by the vectors

a ¼

1

1

1

0
@

1
A; b ¼

1

1

0

0
@

1
A; c ¼

1

�1

0

0
@

1
A

has metric tensor

G ¼

3 2 0

2 2 0

0 0 2

0
@

1
A:

The inverse of the metric tensor is

G� ¼ G�1 ¼
1

2

2 �2 0

�2 3 0

0 0 1

0
@

1
A:

Interpreting the columns ofG�1 as coordinate vectors with

respect to the original basis, one concludes that the reci-

procal basis is given by

a� ¼ a � b; b� ¼ 1
2 ð�2a þ 3bÞ; c� ¼ 1

2 c:

Inserting the columns for a, b, c, one obtains

a� ¼

0

0

1

0
@

1
A; b� ¼

1

2

1

1

�2

0
@

1
A; c� ¼

1

2

1

�1

0

0
@

1
A:

For the direct computation, the matrix B with the basis

vectors a; b; c as columns is

B ¼

1 1 1

1 1 �1

1 0 0

0
@

1
A

and has as its inverse the matrix

B�1 ¼
1

2

0 0 2

1 1 �2

1 �1 0

0
@

1
A:

The rows of this matrix are indeed the vectors a�, b�, c� as

computed above.

(ii) The body-centred cubic lattice L has the vectors

a ¼
1

2

�1

1

1

0
@

1
A; b ¼

1

2

1

�1

1

0
@

1
A; c ¼

1

2

1

1

�1

0
@

1
A

as primitive basis.

The matrix

B ¼
1

2

�1 1 1

1 �1 1

1 1 �1

0
@

1
A

with the basis vectors a; b; c as columns has as its inverse

the matrix

B�1 ¼

0 1 1

1 0 1

1 1 0

0
@

1
A:

The rows of B�1 are the vectors

a� ¼

0

1

1

0
@

1
A; b� ¼

1

0

1

0
@

1
A; c� ¼

1

1

0

0
@

1
A;

showing that the reciprocal lattice of a body-centred cubic

lattice is a face-centred cubic lattice.

1.3.3. The structure of space groups

1.3.3.1. Point groups of space groups

The multiplication rule for symmetry operations

ðW 2; w2ÞðW 1; w1Þ ¼ ðW 2W 1; W 2w1 þ w2Þ

shows that the mapping � : ðW ;wÞ 7!W which assigns a space-

group operation to its linear part is actually a group homo-

morphism, because the first component of the combined

operation is simply the product of the linear parts of the two

operations. As a consequence, the linear parts of a space group

form a group themselves, which is called the point group of G. The

kernel of the homomorphism � consists precisely of the trans-

lations ðI; tÞ 2 T , and since kernels of homomorphisms are

always normal subgroups (cf. Section 1.1.6), the translation

subgroup T forms a normal subgroup of G. According to the

homomorphism theorem (see Section 1.1.6), the point group is

isomorphic to the factor group G=T .

Definition

The point group P of a space group G is the group of linear

parts of operations occurring in G. It is isomorphic to the factor

group G=T of G by the translation subgroup T .

When G is considered with respect to a coordinate system, the

operations of P are simply 3 � 3 matrices.

The point group plays an important role in the analysis of the

macroscopic properties of crystals: it describes the symmetry of

the set of face normals and can thus be directly observed. It is

usually obtained from the diffraction record of the crystal, where

adding the information about the translation subgroup explains

the sharpness of the Bragg peaks in the diffraction pattern.

Although we have already deduced that the translation

subgroup T of a space group G forms a normal subgroup in G

because it is the kernel of the homomorphism mapping each

operation to its linear part, it is worth investigating this fact by an

explicit computation. Let t ¼ ðI; tÞ be a translation in T and

W ¼ ðW ; wÞ an arbitrary operation in G, then one has

WtW�1 ¼ ðW ; wÞðI; tÞðW�1; �W�1wÞ

¼ ðW ; Wt þ wÞðW�1; �W�1wÞ

¼ ðI; �wþWt þ wÞ ¼ ðI; WtÞ;

which is again a translation in G, namely by Wt. This little

computation shows an important property of the translation

subgroup with respect to the point group, namely that every

vector from the translation lattice is mapped again to a lattice

vector by each operation of the point group of G.

Proposition. Let G be a space group with point group P and

translation subgroup T and let L ¼ ft j ðI; tÞ 2 T g be the lattice

of translations in T . Then P acts on the lattice L, i.e. for every

W 2 P and t 2 L one has Wt 2 L.

A point group that acts on a lattice is a subgroup of the full

group of symmetries of the lattice, obtained as the group of

orthogonal mappings that map the lattice to itself. With respect to

a primitive basis, the group of symmetries of a lattice consists of

all integral basis transformations that fix the metric tensor of the

lattice.
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1.3. GENERAL INTRODUCTION TO SPACE GROUPS

Definition

Let L be a three-dimensional lattice with metric tensor G with

respect to a primitive basis a; b; c.

(i) An automorphism of L is an isometry mapping L to itself.

Written with respect to the basis a; b; c, an automorphism

of L is an integral basis transformation fixing the metric

tensor of L, i.e. it is an integral matrix W 2 GL3ðZÞ with

WT �G �W ¼ G.

(ii) The group

B :¼ AutðLÞ ¼ fW 2 GL3ðZÞ j W
T �G �W ¼ Gg

of all automorphisms of L is called the automorphism

group or Bravais group of L. Note that AutðLÞ acts on the

coordinate columns of L, which are simply columns with

integral coordinates.

Since the isometries in the Bravais group of a lattice preserve

distances, the possible images of the vectors in a basis are vectors

of the same lengths as the basis vectors. But due to its discrete-

ness, a lattice contains only finitely many lattice vectors up to a

given length. This means that a lattice automorphism can only

permute the finitely many vectors up to the maximum length of a

basis vector. Thus, there can only be finitely many automorphisms

of a lattice. This argument proves the following important fact:

Theorem. The Bravais group of a lattice is finite. As a conse-

quence, point groups of space groups are finite groups.

As subgroups of the Bravais group of a lattice, point groups

can be realized as integral matrix groups when written with

respect to a primitive basis. For a centred lattice, it is possible that

the Bravais group of a lattice contains non-integral matrices,

because the centring vector is a column with non-integral entries.

However, in dimensions two and three the conventional bases are

chosen such that the Bravais groups of all lattices are integral

when written with respect to a conventional basis.

Information on the Bravais groups of the primitive lattices in

two- and three-dimensional space is displayed in Tables 1.3.3.1

and 1.3.3.2. The columns of the tables contain the names of the

lattices, the metric tensor with respect to the conventional basis

(with only the upper half given, the lower half following by the

symmetry of the metric tensor), the Hermann–Mauguin symbol

for the type of the Bravais group and generators of the Bravais

group (given in the shorthand notation introduced in Section

1.2.2.1 and the corresponding Seitz symbols discussed in Section

1.4.2.2).

The finiteness and integrality of the point groups has important

consequences. For example, it implies the crystallographic

restriction that rotations in space groups of two- and three-

dimensional space can only have orders 1, 2, 3, 4 or 6. On the one

hand, an integral matrix clearly has an integral trace.1 But a

matrix W with the property that W k ¼ I can be diagonalized

over the complex numbers and the diagonal entries have to be

kth roots of unity, i.e. powers of �k ¼ expð2�i=kÞ. Since diag-

onalization does not change the trace, the sum of these kth roots

of unity still has to be an integer and in particular these roots of

unity have to occur in complex conjugate pairs. In dimension 2

this means that the two diagonal entries are complex conjugate

and the only possible ways to obtain an integral trace are

�1 þ ��1
1 ¼ 2, �2 þ ��1

2 ¼ �2, �3 þ ��1
3 ¼ �1, �4 þ ��1

4 ¼ 0 and

�6 þ ��1
6 ¼ 1. In dimension 3 the third diagonal entry does not

have a complex conjugate partner, and therefore has to be �1.

Thus the possible orders in dimension 3 are the same as in

dimension 2.

A much stronger result was obtained by H. Minkowski (1887).

He gave an explicit bound for the maximal power pm of a prime p

which can divide the order of an n-dimensional finite integral

matrix group. In dimension 2 this theorem implies that the orders

of the point groups divide 24 and in dimension 3 the orders of the

point groups divide 48. The Bravais groups 4mm (of order 8) and

6mm (of order 12) of the square and hexagonal lattices in

dimension 2 and the Bravais group m�3m (of order 48) of the

cubic lattice in dimension 3 show that Minkowski’s result is the

best possible in these dimensions.

1.3.3.2. Coset decomposition with respect to the translation
subgroup

The translation subgroup T of a space group G can be used to

distribute the operations of G into different classes by grouping

together all operations that differ only by a translation. This

results in the decomposition of G into cosets with respect to T

(see Section 1.1.4 for details of cosets).

Definition

Let G be a space group with translation subgroup T .

(i) The right coset T W of an operation W 2 G with respect to

T is the set ftW j t 2 T g.

Analogously, the set WT ¼ fWt j t 2 T g is called the left

coset of W with respect to T .

(ii) A set fW 1; . . . ;Wmg of operations in G is called a system

of coset representatives relative to T if every operation W

in G is contained in exactly one coset T W i.

(iii) Writing G as the disjoint union

G ¼ T W 1 [ . . . [ T Wm

is called the coset decomposition of G relative to T .

If the translation subgroup T is a subgroup of index [i] in G, a

set of coset representatives for G relative to T consists of [i]

operations W 1;W 2; . . . ;W ½i�, where W 1 is assumed to be the

identity element e of G. The cosets of G relative to T can be

imagined as columns of an infinite array with [i] columns, labelled

by the coset representatives, as displayed in Table 1.3.3.3.

Table 1.3.3.1
Automorphism groups of two-dimensional primitive lattices

Lattice Metric tensor

Bravais group

Hermann–
Mauguin
symbol Generators

Oblique
g11 g12

g22

� � 2 2: �x; �y

Rectangular
g11 0

g22

� � 2mm 2: �x; �y
m10: �x; y

Square
g11 0

g11

� � 4mm 4+: �y; x
m10: �x; y

Hexagonal
g11 � 1

2 g11
g11

� � 6mm 6+: x � y; x
m21: �x; �x þ y

1 The trace of a matrix is the sum of its diagonal entries.
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