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1.3. GENERAL INTRODUCTION TO SPACE GROUPS

Definition

Let L be a three-dimensional lattice with metric tensor G with

respect to a primitive basis a; b; c.

(i) An automorphism of L is an isometry mapping L to itself.

Written with respect to the basis a; b; c, an automorphism

of L is an integral basis transformation fixing the metric

tensor of L, i.e. it is an integral matrix W 2 GL3ðZÞ with

WT �G �W ¼ G.

(ii) The group

B :¼ AutðLÞ ¼ fW 2 GL3ðZÞ j W
T �G �W ¼ Gg

of all automorphisms of L is called the automorphism

group or Bravais group of L. Note that AutðLÞ acts on the

coordinate columns of L, which are simply columns with

integral coordinates.

Since the isometries in the Bravais group of a lattice preserve

distances, the possible images of the vectors in a basis are vectors

of the same lengths as the basis vectors. But due to its discrete-

ness, a lattice contains only finitely many lattice vectors up to a

given length. This means that a lattice automorphism can only

permute the finitely many vectors up to the maximum length of a

basis vector. Thus, there can only be finitely many automorphisms

of a lattice. This argument proves the following important fact:

Theorem. The Bravais group of a lattice is finite. As a conse-

quence, point groups of space groups are finite groups.

As subgroups of the Bravais group of a lattice, point groups

can be realized as integral matrix groups when written with

respect to a primitive basis. For a centred lattice, it is possible that

the Bravais group of a lattice contains non-integral matrices,

because the centring vector is a column with non-integral entries.

However, in dimensions two and three the conventional bases are

chosen such that the Bravais groups of all lattices are integral

when written with respect to a conventional basis.

Information on the Bravais groups of the primitive lattices in

two- and three-dimensional space is displayed in Tables 1.3.3.1

and 1.3.3.2. The columns of the tables contain the names of the

lattices, the metric tensor with respect to the conventional basis

(with only the upper half given, the lower half following by the

symmetry of the metric tensor), the Hermann–Mauguin symbol

for the type of the Bravais group and generators of the Bravais

group (given in the shorthand notation introduced in Section

1.2.2.1 and the corresponding Seitz symbols discussed in Section

1.4.2.2).

The finiteness and integrality of the point groups has important

consequences. For example, it implies the crystallographic

restriction that rotations in space groups of two- and three-

dimensional space can only have orders 1, 2, 3, 4 or 6. On the one

hand, an integral matrix clearly has an integral trace.1 But a

matrix W with the property that W k ¼ I can be diagonalized

over the complex numbers and the diagonal entries have to be

kth roots of unity, i.e. powers of �k ¼ expð2�i=kÞ. Since diag-

onalization does not change the trace, the sum of these kth roots

of unity still has to be an integer and in particular these roots of

unity have to occur in complex conjugate pairs. In dimension 2

this means that the two diagonal entries are complex conjugate

and the only possible ways to obtain an integral trace are

�1 þ ��1
1 ¼ 2, �2 þ ��1

2 ¼ �2, �3 þ ��1
3 ¼ �1, �4 þ ��1

4 ¼ 0 and

�6 þ ��1
6 ¼ 1. In dimension 3 the third diagonal entry does not

have a complex conjugate partner, and therefore has to be �1.

Thus the possible orders in dimension 3 are the same as in

dimension 2.

A much stronger result was obtained by H. Minkowski (1887).

He gave an explicit bound for the maximal power pm of a prime p

which can divide the order of an n-dimensional finite integral

matrix group. In dimension 2 this theorem implies that the orders

of the point groups divide 24 and in dimension 3 the orders of the

point groups divide 48. The Bravais groups 4mm (of order 8) and

6mm (of order 12) of the square and hexagonal lattices in

dimension 2 and the Bravais group m�3m (of order 48) of the

cubic lattice in dimension 3 show that Minkowski’s result is the

best possible in these dimensions.

1.3.3.2. Coset decomposition with respect to the translation
subgroup

The translation subgroup T of a space group G can be used to

distribute the operations of G into different classes by grouping

together all operations that differ only by a translation. This

results in the decomposition of G into cosets with respect to T

(see Section 1.1.4 for details of cosets).

Definition

Let G be a space group with translation subgroup T .

(i) The right coset T W of an operation W 2 G with respect to

T is the set ftW j t 2 T g.

Analogously, the set WT ¼ fWt j t 2 T g is called the left

coset of W with respect to T .

(ii) A set fW 1; . . . ;Wmg of operations in G is called a system

of coset representatives relative to T if every operation W

in G is contained in exactly one coset T W i.

(iii) Writing G as the disjoint union

G ¼ T W 1 [ . . . [ T Wm

is called the coset decomposition of G relative to T .

If the translation subgroup T is a subgroup of index [i] in G, a

set of coset representatives for G relative to T consists of [i]

operations W 1;W 2; . . . ;W ½i�, where W 1 is assumed to be the

identity element e of G. The cosets of G relative to T can be

imagined as columns of an infinite array with [i] columns, labelled

by the coset representatives, as displayed in Table 1.3.3.3.

Table 1.3.3.1
Automorphism groups of two-dimensional primitive lattices

Lattice Metric tensor

Bravais group

Hermann–
Mauguin
symbol Generators

Oblique
g11 g12

g22

� � 2 2: �x; �y

Rectangular
g11 0

g22

� � 2mm 2: �x; �y
m10: �x; y

Square
g11 0

g11

� � 4mm 4+: �y; x
m10: �x; y

Hexagonal
g11 � 1

2 g11
g11

� � 6mm 6+: x � y; x
m21: �x; �x þ y

1 The trace of a matrix is the sum of its diagonal entries.
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Remark: We can assume some enumeration t1; t2; t3; . . . of the
operations in T because the translation vectors form a lattice. For

example, with respect to a primitive basis, the coordinate vectors

of the translations in G are simply columns

l

m

n

0
@

1
A with integral

components l;m; n. A straightforward enumeration of these

columns would start with

0

0

0

0
B@

1
CA;

1

0

0

0
B@

1
CA;

0

1

0

0
B@

1
CA;

0

0

1

0
B@

1
CA;

�1

0

0

0
B@

1
CA;

0

�1

0

0
B@

1
CA;

0

0

�1

0
B@

1
CA;

1

1

0

0
B@

1
CA;

1

0

1

0
B@

1
CA;

0

1

1

0
B@

1
CA . . .

Writing out the matrix–column pairs, the coset T ðW ;wÞ
consists of the operations of the form ðI; tÞðW ;wÞ ¼ ðW ;wþ tÞ

with t running over the lattice translations of T . This means that

the operations of a coset with respect to the translation subgroup

all have the same linear part, which is also evident from a listing

of the cosets as columns of an infinite array, as in the example

above.

Proposition

Let W ¼ ðW ;wÞ and W 0 ¼ ðW 0;w0Þ be two operations of a

space group G with translation subgroup T .

(1) If W 6¼ W 0, then the cosets T W and T W 0 are disjoint, i.e.

their intersection is empty.

(2) If W ¼ W 0, then the cosets T W and T W 0 are equal,

because WW 0�1 has linear part I and is thus an operation

contained in T .

The one-to-one correspondence between the point-group

operations and the cosets relative to T explicitly displays the

isomorphism between the point group P of G and the factor

group G=T . This correspondence is also exploited in the listing of

the general-position coordinates. What is given there are the

coordinate triplets for coset representatives of G relative to T ,

which correspond to the first row of the array in Table 1.3.3.3. As

just explained, the other operations in G can be obtained from

these coset representatives by adding a lattice translation to the

translational part.

Furthermore, the correspondence between the point group

and the coset decomposition relative to T makes it easy to find a

system of coset representatives fW 1; . . . ;Wmg of G relative to T .

What is required is that the linear parts of theW i are precisely the

operations in the point group of G. If W 1; . . . ;Wm are the

different operations in the point group P of G, then a system of

coset representatives is obtained by choosing for every linear part

W i a translation part wi such that W i ¼ ðW i;wiÞ is an operation

in G.

It is customary to choose the translation parts wi of the coset

representatives such that their coordinates lie between 0 and 1,

Table 1.3.3.2
Automorphism groups of three-dimensional primitive lattices

Lattice Metric tensor

Bravais group

Hermann–
Mauguin
symbol Generators

Triclinic
g11 g12 g13

g22 g23
g33

0
@

1
A

�1 �1: �x; �y; �z

Monoclinic
g11 0 g13

g22 0

g33

0
@

1
A

2/m 2010: �x; y; �z
m010: x; �y; z

Orthorhombic
g11 0 0

g22 0

g33

0
@

1
A

mmm m100: �x; y; z
m010: x; �y; z
m001: x; y; �z

Tetragonal
g11 0 0

g11 0

g33

0
@

1
A

4/mmm 4001: �y; x; z
m001: x; y; �z
m100: �x; y; z

Hexagonal
g11 � 1

2 g11 0

g11 0

g33

0
@

1
A

6/mmm 6001: x � y; x; z
m001: x; y; �z
m100: �x þ y; y; z

Rhombohedral
g11 g12 g12

g11 g12
g11

0
@

1
A

�3m �3111: �z; �x; �y
m1�10: y; x; z

Cubic
g11 0 0

g11 0

g11

0
@

1
A

m�3m m001: x; y; �z
�3111: �z; �x; �y
m110: �y; �x; z

Table 1.3.3.3
Right-coset decomposition of G relative to T

W 1 ¼ e W 2 W 3 . . . W ½i�

t1 t1W 2 t1W 3 . . . t1W ½i�

t2 t2W 2 t2W 3 . . . t2W ½i�

t3 t3W 2 t3W 3 . . . t3W ½i�

t4 t4W 2 t4W 3 . . . t4W ½i�
..
. ..

. ..
. ..

.
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excluding 1. In particular, if the translation part of a coset

representative is a lattice vector, it is usually chosen as the zero

vector o.

Note that due to the fact that T is a normal subgroup of G, a

system of coset representatives for the right cosets is at the same

time a system of coset representatives for the left cosets.

1.3.3.3. Symmorphic and non-symmorphic space groups

If a coset with respect to the translation subgroup contains an

operation of the form ðW ;wÞ with w a vector in the translation

lattice, it is clear that the same coset also contains the operation

ðW ; oÞ with trivial translation part. On the other hand, if a coset

does not contain an operation of the form ðW ; oÞ, this may be

caused by an inappropriate choice of origin. For example, the

operation ð�I; ð1=2; 1=2; 1=2ÞÞ is turned into the inversion

ð�I; ð0; 0; 0ÞÞ by moving the origin to 1=4; 1=4; 1=4 (cf. Section

1.5.1.1 for a detailed treatment of origin-shift transformations).

Depending on the actual space group G, it may or may not be

possible to choose the origin such that every coset with respect to

T contains an operation of the form ðW ; oÞ.

Definition

Let G be a space group with translation subgroup T . If it is

possible to choose the coordinate system such that every coset

of G with respect to T contains an operation ðW ; oÞ with trivial
translation part, G is called a symmorphic space group, other-

wise G is called a non-symmorphic space group.

One sees that the operations with trivial translation part form a

subgroup of G which is isomorphic to a subgroup of the point

group P. This subgroup is the group of operations in G that fix the

origin and is called the site-symmetry group of the origin (site-

symmetry groups are discussed in detail in Section 1.4.4). It is the

distinctive property of symmorphic space groups that they

contain a subgroup which is isomorphic to the full point group.

This may in fact be seen as an alternative definition for

symmorphic space groups.

Proposition. A space group G with point group P is symmorphic

if and only if it contains a subgroup isomorphic to P. For a non-

symmorphic space group G, every finite subgroup of G is

isomorphic to a proper subgroup of the point group.

Note that every finite subgroup of a space group is a subgroup

of the site-symmetry group for some point, because finite groups

cannot contain translations. Therefore, a symmorphic space

group is characterized by the fact that it contains a site-symmetry

group isomorphic to its point group, whereas in non-symmorphic

space groups all site-symmetry groups have orders strictly smaller

than the order of the point group.

Symmorphic space groups can easily be constructed by

choosing a lattice L and a point group P which acts on L. Then

G ¼ fðW ;wÞ j W 2 P;w 2 Lg is a space group in which the coset

representatives can be chosen as ðW ; oÞ.
Non-symmorphic space groups can also be constructed from a

lattice L and a point group P. What is required is a system of

coset representatives with respect to T and these are obtained by

choosing for each operation W 2 P a translation part w. Owing

to the translations, it is sufficient to consider vectors w with

components between 0 and 1. However, the translation parts

cannot be chosen arbitrarily, because for a point-group operation

of order k, the operation ðW ;wÞk has to be a translation ðI; tÞ
with t 2 L. Working this out, this imposes the restriction that

ðW k�1 þ . . .þW þ IÞw 2 L:

Once translation parts w are found that fulfil all these restrictions,

one finally has to check whether the space group obtained this

way is (by accident) symmorphic, but written with respect to an

inappropriate origin. A change of origin by p is realized by

conjugating the matrix–column pair ðW ;wÞ by the translation

ðI;�pÞ (cf. Section 1.5.1 on transformations of the coordinate

system) which gives

ðI;�pÞðW ;wÞðI; pÞ ¼ ðW ;Wpþ w� pÞ ¼ ðW ;wþ ðW � IÞpÞ:

Thus, the space group just constructed is symmorphic if there is a

vector p such that ðW � IÞpþ w 2 L for each of the coset

representatives ðW ;wÞ.
The above considerations also show how every space group

can be assigned to a symmorphic space group in a canonical way,

namely by setting the translation parts of coset representatives

with respect to T to o. This has the effect that screw rotations are

turned into rotations and glide reflections into reflections. The

Hermann–Mauguin symbol (see Section 1.4.1 for a detailed

discussion of Hermann–Mauguin symbols) of the symmorphic

space group to which an arbitrary space group is assigned is

simply obtained by replacing any screw rotation symbol Nm by

the corresponding rotation symbol N and every glide reflection

symbol a, b, c, d, e, n by the symbol m for a reflection. A space

group is found to be symmorphic if no such replacement is

required, i.e. if the Hermann–Mauguin symbol only contains the

symbols 1, 2, 3, 4, 6 for rotations, �1, �3, �4, �6 for rotoinversions and
m for reflections.

Example

The space groups with Hermann-Mauguin symbols P4mm,

P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc are all

assigned to the symmorphic space group with Hermann–

Mauguin symbol P4mm.

1.3.4. Classification of space groups

In this section we will consider various ways in which space

groups may be grouped together. For the space groups them-

selves, the natural notion of equivalence is the classification into

space-group types, but the point groups and lattices from which

the space groups are built also have their own classification

schemes into geometric crystal classes and Bravais types of lattices,

respectively.

Some other types of classifications are relevant for certain

applications, and these will also be considered. The hierarchy of

the different classification levels and the numbers of classes on

the different levels in dimension 3 are displayed in Fig. 1.3.4.1.

1.3.4.1. Space-group types

The main motivation behind studying space groups is that they

allow the classification of crystal structures according to their

symmetry properties. Since many properties of a structure can be

derived from its group of symmetries alone, this allows the

investigation of the properties of many structures simultaneously.

On the other hand, even for the same crystal structure the

corresponding space group may look different, depending on the

chosen coordinate system (see Chapter 1.5 for a detailed

discussion of transformations to different coordinate systems).

Because it is natural to regard two realizations of a group of

symmetry operations with respect to two different coordinate

systems as equivalent, the following notion of equivalence

between space groups is natural.
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