International Tables for Crystallography


Polymer crystallography
R. P. Millane and D. L. Dorset. International Tables for Crystallography (2010). Vol. B, ch. 4.5, pp. 567-589  [ doi:10.1107/97809553602060000777 ]

Abstract

The two primary crystallographic techniques used for studying polymer structure, X-ray fibre diffraction analysis and polymer electron crystallography, are described in this chapter. X-ray fibre diffraction analysis is a collection of crystallographic techniques used to determine molecular and crystal structures of molecules, or molecular assemblies, that form specimens (often fibres) in which the molecules, assemblies or crystallites are approximately parallel but not otherwise ordered. The theory and techniques of structure determination by X-ray fibre diffraction analysis are reviewed. Fibre specimens, the theory of diffraction by these specimens, intensity data collection and processing, and the variety of structure determination methods used for the various kinds of specimens studied by fibre diffraction are described. Polymer electron crystallography may be defined as the quantitative use of electron micrographs and electron diffraction intensities for the determination of polymer crystal structures. Data from thin single microcrystals are required for successful structure determination. Crystallization and data-collection techniques are described and two approaches to crystal structure analysis are discussed.


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The series consists of nine volumes and comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.