International Tables for Crystallography


Structural phase transitions
J.-C. Tolédano, V. Janovec, V. Kopský, J. F. Scott and P. Boček. International Tables for Crystallography (2013). Vol. D, ch. 3.1, pp. 358-396  [ doi:10.1107/97809553602060000915 ]

Abstract

Aspects of phase transitions in crystals that are of interest to crystallographers are described in this chapter. The chapter starts with a brief introduction aimed at defining the field of structural transitions and the terminology used. The theory of structural phase transitions is then described. This theory relates the symmetry characteristics of the transitions to their physical characteristics. The application of the symmetry principles that derive from this theory is illustrated by the results contained in Tables 3.1.3.1 and 3.1.4.1. The first of these two tables concerns the simple but experimentally widespread situation in which a structural transition is not accompanied by a change in the number of atoms per primitive crystal cell. The second table concerns the general case, in which the number of atoms changes, and which corresponds to the onset of superlattice reflections at the phase transition. This table provides, for a set of hypothetical transformations, the various symmetry-based predictions of the theory. The important topic of soft modes, which is related to the microscopic mechanism of a structural transition, is then discussed. The final section of the chapter is an introduction to the accompanying software package Group Informatics.


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The series consists of nine volumes and comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.